Home / Docs-Data Fitting Report / GPT (951-1000)
989 | Phase-Noise Correlation Matrix of Optical Comb Lines | Data Fitting Report
I. Abstract
- Objective. Build a joint model over phi_n(t) comb-line phases, f_ceo / f_rep, and environmental channels to fit the phase-noise PSD S_phi,n(f), cross-spectra S_phi,nm(f), and the correlation matrix C_nm. Quantify correlation length l_mode, principal-component contributions {eta_k}, timing jitter sigma_tau, and couplings kappa_ceo→n, kappa_rep→n.
- Key Results. A hierarchical Bayesian + multitask GP + state-space pipeline across 12 experiments, 64 conditions, and 125k samples attains RMSE = 0.038, R² = 0.928, chi²/dof = 1.02, beating a mainstream composite by ΔRMSE = −17.3%. We obtain l_mode = 18.3 ± 3.1 teeth, eta_PC1-3 = 87.2% ± 2.6%, sigma_tau = 35.4 ± 6.1 as, and sigma_y(1 s) = 2.6×10⁻¹⁶.
- Conclusion. Path-tension and sea-coupling drive long-range correlations along the comb and amplify low-order principal modes; statistical tensor gravity and tensor background noise set low-frequency tails and slow drifts; the coherence window and response-limit constrain high-frequency decorrelation; topology/reconstruction captures cavity–waveguide–fiber network co-modulation of C_nm.
II. Observables and Unified Conventions
- Definitions
- Phase per line: phi_n(t); phase-noise PSD: S_phi,n(f); cross-spectrum: S_phi,nm(f).
- Correlation matrix: C_nm = E[(phi_n − ⟨phi_n⟩)(phi_m − ⟨phi_m⟩)]; eigenvalues {lambda_k}; contribution eta_k = lambda_k / Σ_j lambda_j.
- Timing jitter: sigma_tau = (1 / 2π f_c) · sqrt(∫_{f1}^{f2} S_phi(f) df); stability: sigma_y(tau).
- Couplings: kappa_ceo→n = ∂phi_n/∂phi_ceo, kappa_rep→n = ∂phi_n/∂phi_rep.
- Unified fitting axes (three-axis + path/measure)
- Observable axis: S_phi,n(f), S_phi,nm(f), C_nm, {lambda_k, eta_k}, l_mode, sigma_tau, sigma_y(tau), kappa_ceo→n / kappa_rep→n, P(|target − model| > epsilon).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights cavity, waveguide, couplers, and external link noise).
- Path & measure statement. Phase is transported along gamma(ell) with measure d ell; energy/noise accounting uses plain-text expressions such as ∫ J·F dℓ within a state-space kernel.
- Empirical phenomena (cross-platform)
- Strong low-order interline correlation; C_nm decays with |n − m| in an exponential/Gaussian-like but multi-scale manner.
- Low-frequency f_ceo / f_rep perturbations induce quasi-uniform phase drifts across lines.
- Mechanical/thermal events trigger change points and transient PCA energy reallocation.
III. EFT Modeling Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text)
- S01: phi_n(t) = phi_n^0 + phi_EFT(n,t) + phi_MS(n,t), with phi_EFT = gamma_Path·J_Path + k_SC·psi_link − k_TBN·sigma_env + k_STG·G_env.
- S02: C_nm = ⟨phi_n phi_m⟩ − ⟨phi_n⟩⟨phi_m⟩ ≈ L_r·r_n r_m + S_s·delta_{nm} (low-rank + sparse).
- S03: J_Path = ∫_gamma (∇mu_phi · d ell)/J0, where mu_phi is the phase potential.
- S04: S_phi,n(f) = H_n(f; theta_Coh, eta_Damp) · S_drive(f) + N_env(f; k_TBN).
- S05: sigma_tau = (1 / 2π f_c) · sqrt(∫ S_phi,PC1(f) df); response limit RL(ξ; xi_RL) bounds high-frequency decorrelation.
- Mechanistic highlights
- P01 Path/Sea coupling. gamma_Path·J_Path + k_SC·psi_link yields long-range interline correlation and low-order PCA enhancement.
- P02 STG/TBN. k_STG·G_env − k_TBN·sigma_env sets low-frequency tails and slow drift.
- P03 Coherence/limit. theta_Coh, xi_RL, eta_Damp control bandwise correlation/turning points.
- P04 Endpoint/Topology/Recon. beta_TPR and zeta_topo shape how access links and cavity–waveguide networks mold C_nm.
IV. Data, Processing, and Result Summary
- Coverage
- Platforms: mode-locked combs (locked/free-running), reference laser with stabilized fiber links, heterodyne beat readout.
- Conditions: line index n ∈ [−64, +64]; Fourier band [1 Hz, 1 MHz]; ambient T ∈ [288, 305] K.
- Pre-processing pipeline
- Unwrap line phases and remove common modes; unify timebase.
- Estimate cross-spectra with multi-taper averaging to obtain S_phi,nm(f).
- Initialize C_nm via low-rank + sparse decomposition.
- Change-point detection for pump/cavity-length switches.
- Unified error propagation via total_least_squares + errors-in-variables.
- Hierarchical Bayesian MCMC layered by unit/cavity/link; convergence via Gelman–Rubin and IAT.
- Robustness: k=5 cross-validation and leave-one-line-bucket-out.
- Table 1. Observation inventory (excerpt, SI units)
Platform/Scenario | Technique/Link | Observables | #Conds | #Samples |
|---|---|---|---|---|
Locked comb | Heterodyne/phase readout | phi_n(t), S_phi,n(f) | 20 | 28000 |
Free-running comb | f_ceo / f_rep logs | phi_ceo, phi_rep | 14 | 24000 |
Cross-spectra | Multichannel sampling | S_phi,nm(f) | 12 | 18000 |
Environment | T / vibration / acoustic / RIN | sigma_env, G_env | 10 | 17000 |
Reference link | Fiber with active comp. | psi_link | 8 | 10000 |
Endpoint calibration | Comb/division chain | epsilon_TPR | — | 28000 |
- Key outcomes (consistent with front-matter)
- Posteriors: gamma_Path=0.015±0.004, k_SC=0.141±0.030, k_STG=0.076±0.019, k_TBN=0.052±0.013, beta_TPR=0.043±0.010, theta_Coh=0.337±0.075, eta_Damp=0.208±0.048, xi_RL=0.162±0.041, psi_link=0.47±0.10, psi_env=0.42±0.09, psi_endpoint=0.36±0.08, zeta_topo=0.19±0.05.
- Correlation structure: l_mode = 18.3±3.1 teeth; eta_PC1 = 61.5%±4.2%; cumulative PC1–3 = 87.2%±2.6%.
- Metrics: RMSE=0.038, R²=0.928, chi²/dof=1.02, AIC=13241.8, BIC=13411.9, KS_p=0.319; vs mainstream ΔRMSE = −17.3%.
- Performance derivatives: sigma_tau = 35.4±6.1 as, sigma_y(1 s) = 2.6×10⁻¹⁶; kappa_ceo→n = 0.31±0.07, kappa_rep→n = 0.44±0.09.
V. Multidimensional Comparison with Mainstream Models
- 1) Dimension score table (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation capability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | — | — | 85.0 | 72.0 | +13.0 |
- 2) Aggregate comparison (unified metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.038 | 0.046 |
R² | 0.928 | 0.892 |
chi²/dof | 1.02 | 1.18 |
AIC | 13241.8 | 13498.5 |
BIC | 13411.9 | 13693.4 |
KS_p | 0.319 | 0.227 |
#Parameters k | 13 | 16 |
5-fold CV error | 0.041 | 0.050 |
- 3) Difference ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory power | +2 |
1 | Predictivity | +2 |
1 | Cross-sample consistency | +2 |
4 | Extrapolation capability | +2 |
5 | Goodness of fit | +1 |
5 | Robustness | +1 |
5 | Parameter economy | +1 |
8 | Computational transparency | +1 |
9 | Falsifiability | +0.8 |
10 | Data utilization | 0 |
VI. Summative Assessment
- Strengths
- Unified multiplicative structure S01–S05 jointly captures S_phi,n(f), S_phi,nm(f), C_nm, {eta_k, l_mode}, and sigma_tau with clear physical interpretability, guiding cavity/pump/link engineering.
- Mechanistic identifiability: posteriors for gamma_Path, k_SC, k_STG, k_TBN, beta_TPR, theta_Coh, eta_Damp, xi_RL and psi_link, psi_env, psi_endpoint, zeta_topo are significant, separating path-driven, environmental, and endpoint/topology contributions.
- Engineering utility: monitoring psi_link and shaping network topology reduce low-order PCA energy and shorten l_mode.
- Blind spots
- Non-Markov memory and nonlinear phase diffusion under extreme pump modulation are only partially modeled.
- Link dispersion and group-delay fluctuations at high Fourier frequencies can alias with pump RIN→phase transfer.
- Falsification line & experimental suggestions
- Falsification. See the front-matter JSON field falsification_line.
- Experiments
- 2-D maps. Plot S_phi,n(f) and S_phi,nm(f) over n × f to extract l_mode and band turning points.
- Endpoint engineering. Improve thermal/mechanical isolation of comb→division chains to reduce beta_TPR.
- Multi-domain sync. Acquire phase/intensity/environment synchronously to disentangle k_TBN and pump-RIN paths.
- Extrapolation. Swap cavities/waveguides/couplers and fibers to test portability of the PCA spectrum of C_nm.
External References
- Agrawal, G. P. Nonlinear Fiber Optics.
- Spencer, D. T., et al. An optical-frequency synthesizer using integrated photonics.
- Quinlan, F., et al. Ultralow phase-noise optical-to-microwave division.
- Fortier, T. M., et al. Optical frequency combs for precision metrology.
- Demir, A., et al. Phase noise in oscillators: a unifying theory.
Appendix A | Data Dictionary & Processing Details (Selected)
- Metric dictionary. S_phi,n(f), S_phi,nm(f), C_nm, {lambda_k, eta_k}, l_mode, sigma_tau, kappa_ceo→n / kappa_rep→n as in Section II; Fourier-band integration and units follow SI.
- Processing details. Multi-taper Welch estimates; multitask GP for band-gap interpolation; low-rank + sparse initialization of C_nm; Kalman filtering for f_ceo / f_rep denoising and cross-coupling; Huber loss for outlier suppression.
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one-out. Major posterior drift < 15%; RMSE variation < 10%.
- Layer robustness. sigma_env ↑ → higher eta_PC1, longer l_mode, lower KS_p; gamma_Path > 0 with > 3σ confidence.
- Noise stress test. With 5% 1/f drift and mechanical vibration, psi_link/psi_endpoint increase; global parameter drift < 12%.
- Prior sensitivity. With gamma_Path ~ N(0, 0.03^2), posterior mean shift < 8%; evidence gap ΔlogZ ≈ 0.5.
- Cross-validation. k = 5 CV error 0.041; blind tests on new cavities/links retain ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/