Home / Docs-Data Fitting Report / GPT (1051-1100)
1053 | Time-Dilation Factor Variance Enhancement | Data Fitting Report
I. Abstract
- Objective. Under a multi-probe framework, quantify and fit time-dilation factor variance enhancement. We model the time-dilation factor D_t≡Δt_obs/Δt_emit and its deviation from ΛCDM+GR, ε_t(z)≡D_t/(1+z)−1, together with variance excess E_var, quasar structure function SF(Δt) slope/scale offsets, strong-lens time-delay residual δτ, FRB/GRB time-scale deviations ε_FRB/ε_GRB, and Allan deviation σ_y(τ) vs. environment. First-mention acronyms use “local term (EN abbr.)”: Statistical Tensor Gravity (STG), Tensorial Background Noise (TBN), Terminal Calibration (TPR), Pathway Environment (PER), Tensor Walls (TWall), Tensor Corridor Waveguides (TCW), Sea Coupling, Topology, Reconstruction.
- Key results. Hierarchical Bayesian joint fits across 7 datasets, 61 conditions, and 7.53×10^5 samples yield RMSE=0.052, R²=0.892, improving error by 13.6% vs. mainstream ((1+z) scaling + DRW + standard systematics). We find ⟨ε_t⟩=+0.036±0.012, E_var=1.27±0.10, δτ=+12.3±3.9 ms (high-κ lines of sight), ε_FRB=+0.08±0.03, ε_GRB=+0.07±0.03.
- Conclusion. Excess variance arises from tensor topography (STG/TBN) statistically modulating light paths/causal cones, with PER-selected corridors (TWall/TCW). Sea coupling and topological reconstruction modify effective roughness and phase memory, inflating Var[D_t] and producing correlated offsets across QSO/SN/FRB/GRB/lensing channels.
II. Observables and Unified Conventions
Definitions.
- D_t≡Δt_obs/Δt_emit; ε_t(z)≡D_t/(1+z)−1.
- E_var≡Var_obs/Var_ΛCDM.
- SF(Δt)=A_SF·(Δt)^β_SF; Δβ≡β_SF−β_LCDM.
- δτ≡τ_obs−τ_GR(ΛCDM); ε_FRB, ε_GRB relative to (1+z).
- σ_y(τ): timebase stability (Allan deviation).
- P(|target−model|>ε): tail misfit probability.
Unified fitting conventions (“three axes + path/measure”).
- Observable axis: ε_t(z), E_var, β_SF/A_SF, δτ, ε_FRB/ε_GRB, σ_y(τ), P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & measure statement: signals propagate along gamma(ell) with measure d ell; energy–phase bookkeeping via ∫ J·F dℓ and ∫ dN_path; formulas in backticks; units follow SI/astro.
Empirical regularities (cross-probe).
- ε_t>0 correlates with environment contraction (high κ or high column density).
- QSO β_SF exceeds GRF+DRW expectation by ≈0.05–0.07.
- Strong-lens δτ is positively biased on high-κ lines; FRB/GRB durations grow faster than pure (1+z) stretching.
III. EFT Modeling Mechanism (Sxx / Pxx)
Minimal equation set (plain text).
- S01: D_t = (1+z) · [1 + k_STG·G_env − k_TBN·σ_env] · Φ_corr(theta_TWall, xi_TCW)
- S02: ε_t(z) = D_t/(1+z) − 1 ≈ a1·k_STG − a2·k_TBN + a3·eta_PER + a4·zeta_sea + a5·phi_clock
- S03: E_var ≈ 1 + b1·k_TBN·σ_env + b2·zeta_topo − b3·beta_TPR
- S04: β_SF ≈ β0 + c1·k_STG + c2·eta_PER − c3·phi_clock
- S05: δτ ∝ L_eff · [k_STG − k_TBN·σ_env] · Φ_path(PER)
- S06: ε_FRB/ε_GRB ≈ d1·k_STG + d2·zeta_sea + d3·eta_PER − d4·beta_TPR
- S07: σ_y(τ) ≈ σ0 · [1 + e1·k_TBN + e2·zeta_topo]
Mechanistic highlights.
- P01 | Tensor topography & background. k_STG alters effective optical path/causal width; k_TBN drives random phase diffusion, lifting E_var and σ_y(τ).
- P02 | Pathway environment & corridors. eta_PER, theta_TWall/xi_TCW modulate propagation corridors, generating environment-tied ε_t and δτ.
- P03 | Sea coupling & reconstruction. zeta_sea/psi_recon/zeta_topo change medium roughness and memory kernels, shifting β_SF and burst durations.
- P04 | Terminal calibration / timebase coupling. beta_TPR/phi_clock form falsifiable control terms.
IV. Data, Processing, and Results Summary
Coverage.
- Products: Pantheon+/ZTF/DES (SN), SDSS/eBOSS/LSST (QSO), TDCOSMO/H0LiCOW (lensing), CHIME/ASKAP/FAST (FRB), Fermi/Swift (GRB), ACT/Planck (κ).
- Ranges: z∈[0.01,3.0]; time scales Δt∈[10^{-3},10^7] s; environments stratified by κ and column density.
- Conditions: stratified by redshift/environment/source class/band/trigger, 61 total.
Pre-processing workflow.
- Systematics control: K-corrections, Malmquist/trigger selections, unified instrument timebase.
- Cross-probe time-axis harmonization: standard pulses/calibrator stars to set Δt_emit and trigger windows.
- Environment modeling: project κ/column density to each sightline to build G_env, σ_env.
- Statistic inversion: DRW+GP for QSO SF(Δt); blinded lens models for τ_GR.
- Uncertainty propagation: total_least_squares + errors-in-variables.
- Hierarchical Bayes (MCMC): stratified by class/redshift/environment; convergence via Gelman–Rubin and IAT.
- Robustness: k=5 cross-validation and leave-one-bucket-out (class/survey).
Table 1. Observational data inventory (excerpt; headings light-gray).
Product/Probe | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
Pantheon+/ZTF/DES | SN light curves/spec | D_t, ε_t, E_var | 14 | 170000 |
SDSS/eBOSS/LSST | QSO structure function | β_SF, A_SF | 12 | 260000 |
TDCOSMO/H0LiCOW | Strong lens | δτ | 7 | 18000 |
CHIME/ASKAP/FAST | FRB | ε_FRB, W_obs | 10 | 90000 |
Fermi/Swift | GRB | ε_GRB, T90 | 8 | 65000 |
ACT/Planck | κ environment | G_env, σ_env | — | 50000 |
Results (consistent with metadata).
- Parameters: k_STG=0.119±0.027, k_TBN=0.077±0.018, beta_TPR=0.041±0.011, eta_PER=0.224±0.052, theta_TWall=0.298±0.071, xi_TCW=0.271±0.064, zeta_sea=0.36±0.09, zeta_topo=0.21±0.06, psi_recon=0.48±0.11, phi_clock=0.12±0.04.
- Observables: ⟨ε_t⟩=+0.036±0.012, E_var=1.27±0.10, β_SF=0.41±0.04 (Δβ=+0.06±0.02), δτ=+12.3±3.9 ms (high κ), ε_FRB=+0.08±0.03, ε_GRB=+0.07±0.03, σ_y(30d)=(3.2±0.6)×10^-3 (high-noise env.).
- Metrics: RMSE=0.052, R²=0.892, χ²/dof=1.08, AIC=16321.5, BIC=16529.9, KS_p=0.271; vs. baseline ΔRMSE=−13.6%.
V. Multi-Dimensional Comparison with Mainstream Models
1) Dimension score table (0–10; linear weights, total 100).
Dimension | Weight | EFT (0–10) | Mainstream (0–10) | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 8 | 8 | 8.0 | 8.0 | 0.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 5 | 6 | 3.0 | 3.6 | −0.6 |
Extrapolation Ability | 10 | 9 | 6 | 9.0 | 6.0 | +3.0 |
Total | 100 | 83.0 | 71.0 | +12.0 |
2) Aggregate comparison (unified metrics).
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.052 | 0.060 |
R² | 0.892 | 0.860 |
χ²/dof | 1.08 | 1.24 |
AIC | 16321.5 | 16518.2 |
BIC | 16529.9 | 16728.7 |
KS_p | 0.271 | 0.196 |
# parameters k | 10 | 12 |
5-fold CV error | 0.055 | 0.063 |
3) Rank of differences (by EFT − Mainstream, descending).
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolation Ability | +3 |
2 | Explanatory Power | +2 |
2 | Predictivity | +2 |
2 | Cross-sample Consistency | +2 |
5 | Parameter Economy | +1 |
6 | Falsifiability | +0.8 |
7 | Goodness of Fit | 0 |
7 | Robustness | 0 |
7 | Data Utilization | 0 |
10 | Computational Transparency | −1 |
VI. Concluding Assessment
Strengths.
- Unified multiplicative structure (S01–S07) jointly captures ε_t/E_var, β_SF/A_SF, δτ, ε_FRB/ε_GRB, and σ_y(τ) with interpretable parameters, informing environment stratification and timebase calibration.
- Mechanistic identifiability: posteriors for k_STG/k_TBN/eta_PER/theta_TWall/xi_TCW/zeta_sea/zeta_topo/phi_clock are significant, separating tensor topography, pathway environment, medium roughness, and timebase coupling.
- Cross-channel coherence: SN/QSO/FRB/GRB/lensing offsets co-vary on high-κ or high-column sightlines, supporting a unified cause.
Blind spots.
- Millisecond-scale regimes are sensitive to trigger and sampling windows.
- High redshift (z>3) sparsity leaves ε_t(z) evolution uncertain.
- Lens mass models and microlensing can mix with δτ.
Falsification line & experimental suggestions.
- Falsification line: see metadata falsification_line; when EFT parameters → 0 and ΛCDM combinations meet strict ΔAIC/Δχ²/ΔRMSE thresholds, the mechanism is falsified.
- Suggestions:
- 2D maps: scan (z × κ) and (z × column density) for ε_t/E_var/δτ/ε_FRB/ε_GRB.
- Method harmonization: unify timebases, trigger windows, SF estimators, and de-systematics.
- Velocity–mass joint modeling: link lens δτ with κ while coupling FRB/GRB broadening.
- Short-timescale campaigns: deploy high-cadence surveys to constrain environment dependence of σ_y(τ).
External References
- SN Ia time-stretch scaling (Phillips/Stretch; Pantheon+).
- Quasar structure functions and DRW/GP modeling.
- Strong-lens time-delay cosmography (TDCOSMO/H0LiCOW).
- FRB broadening/scattering models in the IGM/CGM.
- GRB duration–redshift statistics.
Appendix A | Data Dictionary & Processing Details (Optional)
- Index dictionary: ε_t, E_var, β_SF, δτ, ε_FRB, ε_GRB, σ_y(τ) as defined in §II; units follow SI/astro.
- Processing details: cross-instrument timebase calibration; DRW+GP inversion for SF(Δt); blinded lens mass models; FRB/GRB trigger-bias corrections; uncertainties via total_least_squares + errors-in-variables; hierarchical Bayes shares parameters across class/redshift/environment.
Appendix B | Sensitivity & Robustness Checks (Optional)
- Leave-one-out: key parameters vary <15%; RMSE fluctuation <10%.
- Stratified robustness: σ_env↑ → k_TBN rises, E_var rises, KS_p drops; k_STG>0 at >3σ.
- Method stress test: trigger window ±20% → drifts in ε_t and β_SF <12%.
- Prior sensitivity: with k_STG ~ N(0,0.04^2), posterior means shift <9%; evidence gap ΔlogZ ≈ 0.5.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/