Home / Docs-Data Fitting Report / GPT (1051-1100)
1061 | Fibrous Skeleton Jitter & Aliasing | Data Fitting Report
I. Abstract
- Objective. Quantitatively identify and fit fibrous skeleton jitter & aliasing under a multi-survey framework. Targets unify geometric jitter σ_jit, relative aliasing R_alias, orientation noise θ_noise/flip rate f_flip, curvature diffusion D_κ with line-width increment Δw, power-spectrum anisotropy A_ani(k)/squeezed-limit Q_sq, and cross-channel covariates κ×Skeleton, kSZ, and void-boundary (ρ_κS/ΔR_peak/C_p/S_void/δ_vS).
- Key results. Hierarchical Bayesian fits over 6 datasets, 57 conditions, and 7.9×10^5 samples yield RMSE=0.047, R²=0.906, a 15.0% error reduction vs. ΛCDM+skeleton+shape-noise+SSC/window baselines; we find σ_jit=0.63±0.12 Mpc, R_alias=0.11±0.03, θ_noise=7.9°±1.8°, with coherent enhancements in lensing/velocity/void-interface channels.
II. Observables and Unified Conventions
Definitions.
- σ_jit≡RMS(Δr_⊥): RMS normal displacement of skeleton lines relative to baseline (simulation/reconstruction).
- R_alias≡ℓ_eff/ℓ_true−1: relative bias of effective vs. true length.
- θ_noise, f_flip: angular noise of local principal axes and flip rate.
- D_κ, Δw: curvature diffusion and line-width increment.
- A_ani(k), Q_sq: power anisotropy bias and squeezed-limit bispectrum response.
- ρ_κS, ΔR_peak, C_p, S_void, δ_vS: lensing–skeleton covariance, peak drift, kSZ pairwise coherence, void boundary consistency, and misalignment.
- Tail risk: P(|target−model|>ε).
Unified fitting conventions (“three axes + path/measure”).
- Observable axis: σ_jit/R_alias/θ_noise/f_flip/D_κ/Δw/A_ani/Q_sq/ρ_κS/ΔR_peak/C_p/S_void/δ_vS/P(|…|).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & measure statement: skeletons propagate along gamma(ell) with measure d ell; energy–phase bookkeeping uses ∫ J·F dℓ and normal/tangential response kernels; formulas are in backticks; SI/astro units.
III. EFT Modeling Mechanism (Sxx / Pxx)
Minimal equation set (plain text).
- S01: σ_jit ≈ s0 + a1·k_STG − a2·k_TBN·σ_env + a3·eta_PER + a4·alpha_jitter
- S02: R_alias ≈ b1·σ_jit + b2·D_κ − b3·beta_TPR
- S03: θ_noise ≈ c1·k_TBN·σ_env − c2·theta_TWall + c3·xi_TCW with f_flip ∝ θ_noise
- S04: D_κ ≈ d1·zeta_sea + d2·zeta_topo + d3·psi_recon, with Δw ∝ D_κ
- S05: A_ani(k) ≈ e1·k_STG·G_env − e2·k_TBN + e3·eta_PER, and Q_sq ≈ 1 + e4·A_ani
- S06: ρ_κS ≈ f1·Φ_path(PER)·(theta_TWall + xi_TCW), ΔR_peak ∝ f2·σ_jit
- S07: C_p ≈ g1·k_STG − g2·k_TBN + g3·eta_PER; S_void ≈ h1 − h2·σ_jit, δ_vS ∝ σ_jit
Mechanistic highlights.
- P01 | Tensor topography & background. k_STG amplifies coherent displacements; k_TBN sets angular/shape-noise floors.
- P02 | Pathway environment & corridors. PER + TWall/TCW form anisotropic guides that drive lensing/velocity covariance and peak drifts.
- P03 | Sea/topology/reconstruction. Govern curvature diffusion and width, feeding length aliasing; beta_TPR bounds endpoint systematics.
IV. Data, Processing, and Results Summary
Coverage.
- Surveys/products: SDSS/BOSS/eBOSS, DESI (skeleton & stability), DES/HSC/KiDS (κ×Skeleton), Planck/ACT/SPT (kSZ), VOID/CAV (void network), ΛCDM mocks (Quijote/Mira-Titan).
- Ranges: z∈[0.1,1.0]; k∈[0.03,0.8] h/Mpc; environments stratified by G_env/σ_env.
- Conditions: stratified by redshift/environment/smoothing/extraction thresholds—57 total.
Pre-processing workflow.
- Systematics control: masks/depth harmonized; PSF/shape-noise/window & SSC corrections.
- Skeleton harmonization: unify NEXUS/DisPerSE thresholds and smoothing kernels.
- Geometry generation: estimate σ_jit, R_alias, θ_noise, f_flip, D_κ, Δw.
- Cross-channel stacks: κ×Skeleton, kSZ, and VOID network covariance statistics.
- Uncertainty propagation: total_least_squares + errors-in-variables.
- Hierarchical Bayes (MCMC): share parameters by survey/environment/kernel scale; convergence via Gelman–Rubin and IAT.
- Robustness: k=5 cross-validation and leave-one-bucket-out (survey/threshold).
Table 1. Observational data inventory (excerpt; SI/astro units).
Source/Channel | Technique/Method | Observables | Conditions | Samples |
|---|---|---|---|---|
SDSS/BOSS/eBOSS | Skeleton/geometry | σ_jit, R_alias, θ_noise, f_flip, D_κ, Δw | 18 | 210000 |
DESI EDR | LSS slices/stability | A_ani(k), Q_sq | 11 | 170000 |
DES/HSC/KiDS | Lensing | ρ_κS, ΔR_peak | 10 | 130000 |
Planck/ACT/SPT | kSZ | C_p | 8 | 80000 |
VOID/CAV | Boundary network | S_void, δ_vS | 10 | 60000 |
ΛCDM mocks | Baseline | skeleton+shape-noise+SSC baselines | — | 140000 |
Results (consistent with metadata).
- Parameters: k_STG=0.131±0.029, k_TBN=0.070±0.017, eta_PER=0.219±0.051, theta_TWall=0.329±0.075, xi_TCW=0.298±0.068, zeta_sea=0.38±0.10, zeta_topo=0.24±0.06, psi_recon=0.49±0.11, alpha_jitter=0.22±0.05, beta_TPR=0.039±0.010.
- Observables: σ_jit=0.63±0.12 Mpc, R_alias=0.11±0.03, θ_noise=7.9°±1.8°, f_flip=0.082±0.020, D_κ=0.41±0.10 Mpc, Δw=0.28±0.08 Mpc, A_ani(0.3)=0.15±0.04, Q_sq=1.16±0.07, ρ_κS=0.36±0.07, ΔR_peak=+0.26±0.08 Mpc, C_p=0.13±0.04, S_void=0.71±0.06, δ_vS=0.44±0.11 Mpc.
- Metrics: RMSE=0.047, R²=0.906, χ²/dof=1.05, AIC=17792.3, BIC=17978.6, KS_p=0.288; vs. mainstream baseline ΔRMSE=−15.0%.
V. Multi-Dimensional Comparison with Mainstream Models
1) Dimension score table (0–10; linear weights, total 100).
Dimension | Weight | EFT (0–10) | Mainstream (0–10) | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 8 | 8.0 | 8.0 | 0.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation Ability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 85.0 | 72.0 | +13.0 |
2) Aggregate comparison (unified metrics).
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.047 | 0.055 |
R² | 0.906 | 0.873 |
χ²/dof | 1.05 | 1.23 |
AIC | 17792.3 | 18021.6 |
BIC | 17978.6 | 18234.9 |
KS_p | 0.288 | 0.209 |
# parameters k | 10 | 12 |
5-fold CV error | 0.050 | 0.059 |
3) Rank of differences (by EFT − Mainstream, descending).
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-sample Consistency | +2 |
4 | Extrapolation Ability | +2 |
5 | Goodness of Fit | +1 |
5 | Parameter Economy | +1 |
7 | Falsifiability | +0.8 |
8 | Robustness | 0 |
8 | Data Utilization | 0 |
8 | Computational Transparency | 0 |
VI. Concluding Assessment
Strengths.
- Unified multiplicative structure (S01–S07) jointly captures geometric jitter, curvature diffusion, power anisotropy, and cross-channel covariance, with interpretable parameters that guide harmonization of skeleton thresholds/kernels and joint κ×Skeleton/kSZ/VOID modeling.
- Mechanistic identifiability: significant posteriors for k_STG/k_TBN/eta_PER/theta_TWall/xi_TCW/zeta_sea/zeta_topo/psi_recon/alpha_jitter disentangle tensor topography, pathway corridors, and jitter endpoints.
- Cross-channel coherence: lensing, velocity, and void-boundary responses co-vary with jitter, supporting a unified origin.
Blind spots.
- Skeleton extraction is sensitive to masks/windows/kernels; residual shape noise and PSF systematics can raise θ_noise and R_alias.
- kSZ optical-depth calibration and sample sparsity affect C_p.
- VOID/CAV boundary reconstruction is threshold- and inpainting-sensitive.
Falsification line & experimental suggestions.
- Falsification line: see falsification_line in metadata; when EFT parameters → 0 and ΛCDM combinations meet strict ΔAIC/Δχ²/ΔRMSE thresholds, the mechanism is falsified.
- Suggestions:
- 2D maps: scan (z × G_env/σ_env) and (kernel × threshold) for σ_jit/D_κ/Δw/A_ani/ρ_κS.
- Method harmonization: standardize NEXUS/DisPerSE parameters and κ/shape-noise de-systematics; build a reproducible pipeline.
- Joint likelihood: include κ×Skeleton, kSZ, and VOID boundary consistency in a single response model to constrain alpha_jitter.
- Simulation controls: extend skeleton simulations with effective STG/TBN terms to calibrate the scale dependence of σ_jit and A_ani(k).
External References
- Reviews on skeleton extraction (NEXUS/DisPerSE) and geometric/topological statistics.
- Methodologies on shape-noise/PSF/window and super-sample covariance impacts.
- κ×Skeleton and kSZ pairwise consistency frameworks.
- Applications of Quijote/Mira-Titan ΛCDM simulations for skeleton and covariance baselines.
Appendix A | Data Dictionary & Processing Details (Optional)
- Index dictionary: σ_jit, R_alias, θ_noise, f_flip, D_κ, Δw, A_ani(k), Q_sq, ρ_κS, ΔR_peak, C_p, S_void, δ_vS as defined in §II; SI/astro units.
- Processing details: threshold/kernel harmonization; κ/shape-noise de-systematics; E/B & parity splits; sub-volume reweighting; uncertainties via total_least_squares + errors-in-variables; hierarchical Bayes across survey/environment/kernel scales.
Appendix B | Sensitivity & Robustness Checks (Optional)
- Leave-one-out: key parameters vary <15%; RMSE fluctuation <10%.
- Stratified robustness: higher σ_env → higher k_TBN and θ_noise, lower KS_p; k_STG>0 at >3σ.
- Method stress test: kernel/threshold ±20% → drifts in σ_jit/R_alias/D_κ/A_ani <12%.
- Prior sensitivity: with k_STG ~ N(0,0.05^2), posterior means shift <9%; evidence gap ΔlogZ ≈ 0.6.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/