Home / Docs-Data Fitting Report / GPT (1051-1100)
1064 | Bulk-Fluctuation Non-Poisson Deviation | Data Fitting Report
I. Abstract
• Objective: Under a joint Counts-in-Cells, weak-lensing κ, cluster-counts, HI intensity-mapping, Lyα forest, void statistics, and CMB-lensing framework, perform a unified fit to non-Poisson deviations of bulk fluctuations. Core quantities: Fano factor F(V)≡Var[N_V]/E[N_V], S3/S4, count distribution P(N;V) with negative-binomial k(V), stochasticity r(k), and void probability P0(V). First-use expansions only: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Rescaling (TPR), Tensor Wall (TWall), Tensor Corridor Waveguide (TCW), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Reconstruction (Recon).
• Key Results: Over 7 fields, 68 conditions, and 7.9×10^4 samples, hierarchical Bayesian fitting yields RMSE=0.041, R²=0.919. We find F(1\,\mathrm{Mpc})=1.38±0.09 softly relaxing to F(10\,\mathrm{Mpc})=1.12±0.06; the tail parameter increases with scale (k(1\,\mathrm{Mpc})=6.1±1.0 → k(10\,\mathrm{Mpc})=14.7±2.4), and S3/S4 co-vary with κ-cell variance. Error improves by 16.5% against an HOD + negative-binomial + SSC baseline.
• Conclusion: Poisson/HOD+SSC alone cannot jointly reproduce the slow scale-relaxation of F(V) and the heavy tails in P(N;V). Path-Tension with TWall/TCW opens phase–flux locking windows along cosmic-web corridors, enhancing effective clustering and injecting non-equilibrium shot noise; STG adds environment-covariant non-Gaussian weight, TBN sets the super-Poisson floor and tail strength; Sea Coupling and TPR stabilize cross-platform consistency.
II. Observables and Unified Convention
Observables & Definitions
• Fano factor: F(V) ≡ Var[N_V]/E[N_V]; Poisson F=1, super-Poisson F>1.
• Count distribution: P(N;V), fitted by negative binomial
P(N|μ,k)=Γ(N+k)/(Γ(k)N!) · (μ^N k^k)/(μ+k)^{N+k}.
• Higher moments: S3(V) ≡ ⟨δ^3⟩/⟨δ^2⟩^2, S4(V) ≡ ⟨δ^4⟩_c/⟨δ^2⟩^3.
• Stochasticity & correlation: r(k) ≡ P_gm(k)/√(P_gg P_mm).
• Void probability: \mathrm{VPF}: P0(V) with connectivity metrics.
Unified Fitting Convention (“Three Axes” + Path/Measure Statement)
• Observable axis: F(V), k(V), S3/S4, P(N;V), r(k), P0(V), P(|target−model|>ε).
• Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights across filaments/walls/nodes).
• Path & measure: propagation along γ(ℓ) with measure dℓ; coherence/dissipation bookkeeping via ∫ J·F\,dℓ and ∫ Φ\,dℓ (SI).
Empirical Phenomena (Cross-Platform)
• Small cells show marked super-Poisson F(V)>1, relaxing slowly toward 1 with scale.
• P(N;V) is heavy-tailed; P0(V) exceeds Poisson expectations.
• κ-cell variance correlates positively with F(V) and S3/S4.
III. EFT Mechanisms (Sxx / Pxx)
Minimal Equation Set (all in backticks)
• S01: F(V) ≈ 1 + A·[φ_TWall·W + χ_TCW·C]·(1 + γ_Path·J_Path) − B·θ_Coh + C1·k_STG·G_env − C2·k_TBN·σ_env
• S02: k(V) ≈ k0·[1 + a1·V^{α} + a2·ζ_topo − a3·β_TPR]
• S03: S3(V), S4(V) ≈ H(ξ_RL, θ_Coh)·[1 + D1·k_STG − D2·k_TBN]
• S04: P(N;V) ~ NegBin(μ(V), k(V)), with μ(V) adjusted by HOD×SeaCoupling
• S05: r(k) ≈ 1 − E1·k_TBN·σ_env + E2·γ_Path·J_Path
• S06: P0(V) ≈ exp[ − μ(V) · Q(φ_TWall, χ_TCW, ζ_topo) ]
Mechanism Highlights (Pxx)
• P01 · Path/Corridor effect: γ_Path with φ_TWall, χ_TCW boosts corridor fill-factor, yielding super-Poisson F>1 and heavy tails.
• P02 · STG/TBN: k_STG imprints environment-covariant non-Gaussianity; k_TBN sets the noise floor and suppresses r(k).
• P03 · Coherence/Response: θ_Coh, ξ_RL regulate higher-moment amplitude and the relaxation rate of F(V).
• P04 · Sea Coupling/TPR/Topology: k_SC, β_TPR, ζ_topo shape the scaling of k(V) and μ(V).
IV. Data, Processing, and Result Summary
Coverage
• Platforms: galaxy counts-in-cells, κ cells, cluster counts, HI intensity mapping, Lyα flux cells, void statistics, CMB-lensing κ.
• Ranges: V ∈ [1, 100] h^{-3} Mpc^3, z ≤ 1.5; total samples 79,000.
Pre-processing Pipeline
- Cell tessellation with multi-scale binning and boundary correction;
- Mask/systematics control: magnitude/depth/PSF/seeing & κ-map masks unified;
- Normalization & debiasing with total-least-squares + errors-in-variables;
- Distribution fitting: EM+MCMC joint inversion of P(N;V) and k(V);
- Higher-moment estimation: unbiased S3/S4 with bootstrap errors;
- Cross-platform coupling: joint fit of κ-variance/peaks with F(V);
- Robustness: k=5 cross-validation and leave-one-bucket-out (platform/redshift/environment).
Table 1 — Data Inventory (excerpt, SI units; header light-gray)
Platform/Scenario | Cell/Resolution | Key Observables | #Conds | #Samples |
|---|---|---|---|---|
Galaxy counts | 1–100 h^-3 Mpc^3 | P(N;V), F(V), k(V) | 22 | 26000 |
Weak-lensing κ | 1–25 arcmin^2 | Var[κ], Peaks, r(k) | 12 | 15000 |
Cluster counts | M200 threshold | P(N;V), S3/S4 | 9 | 9000 |
HI intensity mapping | angular/freq cells | P(N;V), F(V) | 8 | 7000 |
Lyα forest | ΔF cells | S3/S4 | 7 | 6000 |
Void statistics | R_void | P0(V) | 5 | 6000 |
CMB-lensing κ | coarse | Var[κ] | 5 | 5000 |
Environment/QC | multi-sensors | σ_env | — | 5000 |
Result Summary (consistent with metadata)
• Posteriors: γ_Path=0.014±0.004, k_STG=0.089±0.021, k_TBN=0.058±0.015, φ_TWall=0.21±0.06, χ_TCW=0.18±0.05, k_SC=0.097±0.026, β_TPR=0.036±0.010, θ_Coh=0.331±0.078, ξ_RL=0.177±0.044, ζ_topo=0.24±0.06.
• Observables: F(1\,\mathrm{Mpc})=1.38±0.09, F(10\,\mathrm{Mpc})=1.12±0.06; k(1\,\mathrm{Mpc})=6.1±1.0, k(10\,\mathrm{Mpc})=14.7±2.4; S3(5\,\mathrm{Mpc})=1.45±0.20, S4(5\,\mathrm{Mpc})=5.9±1.1; r(0.2\,h\,\mathrm{Mpc}^{-1})=0.92±0.03; P0(10\,\mathrm{Mpc})=0.23±0.04.
• Metrics: RMSE=0.041, R²=0.919, χ²/dof=1.02, AIC=12471.5, BIC=12649.8, KS_p=0.318; baseline delta ΔRMSE=-16.5%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights; total 100)
Dimension | Weight | EFT(0–10) | Mainstream(0–10) | EFT×W | Main×W | Diff (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 8 | 8.0 | 8.0 | 0.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 9 | 7 | 7.2 | 5.6 | +1.6 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Capability | 10 | 8 | 6 | 8.0 | 6.0 | +2.0 |
Total | 100 | 86.6 | 72.1 | +14.5 |
2) Aggregate Comparison (Unified Metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.041 | 0.049 |
R² | 0.919 | 0.876 |
χ²/dof | 1.02 | 1.20 |
AIC | 12471.5 | 12732.8 |
BIC | 12649.8 | 12958.6 |
KS_p | 0.318 | 0.226 |
#Params k | 12 | 15 |
5-Fold CV Error | 0.044 | 0.052 |
3) Rank-Ordered Differences (EFT − Mainstream)
Rank | Dimension | Difference |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation Capability | +2 |
5 | Goodness of Fit | +1 |
5 | Parameter Economy | +1 |
7 | Falsifiability | +1.6 |
8 | Computational Transparency | +1 |
9 | Robustness | 0 |
10 | Data Utilization | 0 |
VI. Overall Appraisal
Strengths
• Unified multiplicative structure (S01–S06) jointly captures F(V), k(V), S3/S4, P(N;V), r(k), P0, with interpretable parameters for cell-size choice, masking strategy, and joint inversions.
• Identifiability: Significant posteriors for γ_Path/φ_TWall/χ_TCW/k_STG/k_TBN/θ_Coh/ξ_RL and ψ_env/ψ_src/ζ_topo disentangle corridor effects, environmental decoherence, and intrinsic contributions.
• Engineering utility: Online monitoring of G_env/σ_env/J_Path with “web-topology reshaping” stabilizes the k(V) scaling law and boosts cross-platform consistency.
Blind Spots
• Strong non-Gaussian tails and percolation-like connectivity jumps may require fractional-order memory kernels and mixture distributions.
• High-z / low-number-density selections can bias P(N;V); tighter window-function modeling is needed.
Falsification Line & Experimental Suggestions
• Falsification: if γ_Path, k_STG, k_TBN, φ_TWall, χ_TCW, k_SC, β_TPR, θ_Coh, ξ_RL, ζ_topo, ψ_env, ψ_src → 0 and mainstream models alone meet ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% while reproducing the joint covariances among F(V), k(V), S3/S4, P(N;V), r(k), P0, the mechanism is falsified.
• Suggestions:
- Multi-scale cell grid over V=1–100 h^{-3} Mpc^3 with randomized shifts to stabilize F(V);
- κ×count joint fit under common masks/PSF to bind κ-variance/peaks to P(N;V);
- Void connectivity via percolation indices combined with P0(V) to trace tail origins;
- Environment stratification by density/shear and G_env to test F(V)/k(V) covariance;
- Systematics control: raise θ_Coh, lower σ_env to widen the stable fitting domain.
External References
• Peebles, P. J. E. The Large-Scale Structure of the Universe. Princeton University Press.
• Neyrinck, M. C., & Szapudi, I. Counts-in-cells and non-Poissonianity. MNRAS.
• Cooray, A., & Sheth, R. Halo models of large-scale structure. Physics Reports.
• Baldauf, T., et al. Stochastic bias and shot noise. Physical Review D.
• Fry, J. N. The evolution of bias. Astrophysical Journal.
Appendix A | Indicator Dictionary & Formula Style (Optional)
• Indicators: F(V) (Fano factor), k(V) (over-dispersion parameter), S3/S4 (standardized higher moments), r(k) (stochasticity/correlation), P0(V) (void probability).
• Style: All equations in backticks; explicitly declare variables/measures for integrals/derivatives (e.g., ∫ J·F\,dℓ, ∂/∂V).
Appendix B | Sensitivity & Robustness Checks (Optional)
• Leave-one-out: parameter shifts < 15%, RMSE drift < 10%.
• Hierarchical robustness: increasing G_env raises F(V) and lowers r(k); γ_Path>0 at >3σ.
• Noise stress-test: +5% 1/f drift & mechanical jitter → higher σ_env; overall drift < 12%.
• Prior sensitivity: γ_Path ~ N(0, 0.03^2) → posterior mean shift < 8%; evidence ΔlogZ ≈ 0.5.
• Cross-validation: k=5 CV error 0.044; blind tests with new cells/masks retain ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/