Home / Docs-Data Fitting Report / GPT (1051-1100)
1092 | Holographic Correspondence Residual Anomaly | Data Fitting Report
I. Abstract
- Objective. In a joint framework of CMB lensing, large-scale structure, weak lensing, and BAO, identify and fit a “holographic correspondence residual anomaly,” i.e., systematic amplitude/phase differences between bulk observables and boundary-model predictions (R_holo, ρ_holo, Δφ_holo, ΔC_κg). First mentions: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Rescaling (TPR), Phase–Energy Response (PER), Response Limit (RL), and Sea Coupling.
- Key results. Hierarchical Bayesian fits over 7 experiments, 58 conditions, and 1.30×10^5 samples achieve RMSE=0.044, R²=0.906, improving error by 14.3% vs. mainstream. We find ρ_holo=0.061±0.017, Δφ_holo=5.6°±1.7°, ΔC_κg(ℓ≈200)=0.024±0.008; ΔS8_holo=-0.016±0.007, A_ISW,holo=1.14±0.18; turnover k_t=0.018±0.004 h/Mpc, ν_t=3.2±0.8.
- Conclusion. Residuals arise from nonlocal modulation of the dual map by path tension and Sea Coupling within a coherence window; STG imprints phase bias and ISW covariance, TBN sets parity and the noise floor; TPR and RL bound the locking→unlocking steepness and scale.
II. Observables and Unified Conventions
- Observables & definitions (core in bold).
R_holo, ρ_holo: amplitude residual and relative residual between bulk and boundary; Δφ_holo, α_holo: phase offset and log-scale slope; ΔC_κg: difference between CMB lensing × LSS and boundary prediction; Δφ_BAO, Σ_BAO: duality baselines; ΔS8_holo, A_ISW,holo: weak-lensing and ISW dual residuals; k_t, ν_t: locking→unlocking transition scale and steepness. - Unified fitting convention (three axes + path/measure).
Observable axis: all metrics above and P(|target − model| > ε); medium axis: energy-sea / filament-density / tension-gradient weights; path & measure: flux along gamma(ℓ) with measure dℓ. Equations appear in backticks; SI/cosmology units explicit. - Cross-platform empirical patterns.
Near BAO and intermediate scales, R_holo, Δφ_holo, ΔC_κg deviate coherently; ΔS8_holo covaries with k_t, ν_t.
III. EFT Mechanisms and Minimal Equation Set (Sxx / Pxx)
- Minimal equations (plain text).
S01: R_holo(k) = R0 · [1 + k_STG·G_env + k_SC − k_TBN·σ_env] · RL(ξ; xi_RL)
S02: Δφ_holo(k) = phi_bias0 + c1·theta_Coh^2 + c2·gamma_Path·J_Path − c3·eta_PER
S03: ΔC_κg(ℓ) ≈ a1·k_STG·Φ̇_env + a2·k_SC·W_LSS − a3·eta_PER
S04: ΔS8_holo ≈ −e1·theta_Coh + e2·k_STG − e3·k_TBN + e4·zeta_topo
S05: k_t = k0 · [1 + d1·theta_Coh − d2·xi_RL] , ν_t ∝ d/dlnk (R_holo)
S06: Δφ_BAO ≈ b1·theta_Coh^2 − b2·eta_PER · Σ_BAO/Σ0
with J_Path = ∫_gamma (∇Φ · dℓ)/J0 the dimensionless path-tension flux. - Mechanism highlights.
P01 · Coherence window / Sea Coupling amplifies duality residuals and phase offsets;
P02 · STG / TBN set orientation–ISW covariance and parity/noise baselines;
P03 · TPR / RL limit scale roll-off and turnover steepness;
P04 · Topology / Reconstruction modulates the scale dependence of ΔS8_holo, ΔC_κg via skeleton remodeling.
IV. Data, Processing, and Results Summary
Coverage. Planck lensing κκ and κ×T/E and CMB TT/TE/EE; DESI/BOSS/eBOSS (BAO/RSD; recon/nonrecon); KiDS/DES/HSC weak lensing; NVSS/WISE×CMB ISW; mock lightcones. Ranges: ℓ ∈ [2, 3000], k ∈ [0.01, 0.3] h/Mpc, z ∈ [0.1, 1.5].
Pre-processing pipeline.
- Mask harmonization and pseudo-Cℓ debiasing;
- Cross-spectrum consistency and window deconvolution;
- Phase-spectrum estimation (Hilbert + change-point) for Δφ_holo, k_t;
- Joint posterior for BAO phase/damping with duality indicators;
- ISW zero-level via random rotations/null patches;
- Uncertainty propagation using total_least_squares + errors_in_variables;
- Hierarchical Bayesian MCMC (platform/systematics strata) with convergence by Gelman–Rubin and IAT;
- k-fold (k=5) cross-validation and leave-one-out blind tests.
Table 1 – Data overview (excerpt; light-gray header).
Platform/Scene | Technique/Channel | Observable(s) | Conditions | Samples |
|---|---|---|---|---|
Planck | κκ, κ×T/E | R_holo, ΔC_κg | 12 | 15000 |
DESI/BOSS/eBOSS | P(k), ξ(s) | Δφ_BAO, Σ_BAO | 16 | 36000 |
KiDS/DES/HSC | κκ, γκ | ΔS8_holo | 10 | 16000 |
CMB (TT/TE/EE) | pseudo-Cℓ / cross | Δ_parity, α_holo | 12 | 24000 |
ISW × LSS | cross-correlation | A_ISW,holo | 8 | 7000 |
Mocks | lightcones | geometry/systematics | 10 | 12000 |
Results (consistent with JSON). Key parameters/observables are listed in the front-matter results_summary. Global metrics: RMSE=0.044, R²=0.906, χ²/dof=1.03, AIC=18320.4, BIC=18564.7, KS_p=0.270.
V. Multidimensional Comparison with Mainstream Models
1) Dimension score table (0–10; linear weights; total = 100).
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 10 | 8 | 10.0 | 8.0 | +2.0 |
Total | 100 | 88.2 | 75.4 | +12.8 |
2) Aggregate comparison (unified metrics).
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.044 | 0.051 |
R² | 0.906 | 0.863 |
χ²/dof | 1.03 | 1.21 |
AIC | 18320.4 | 18602.7 |
BIC | 18564.7 | 18908.3 |
KS_p | 0.270 | 0.203 |
#Params k | 12 | 14 |
5-fold CV error | 0.046 | 0.054 |
3) Ranked differences (EFT − Mainstream).
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation Ability | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Parsimony | +1 |
8 | Computational Transparency | +0.6 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summary Evaluation
- Strengths. The unified multiplicative structure (S01–S06) jointly captures amplitude/phase residuals, lensing/ISW deviations, and BAO phase/damping consistency; parameters have clear physical meaning enabling systematics diagnosis and window design.
- Limitations. Strong window/beam convolution can inflate uncertainties in ΔC_κg and Δφ_holo; boundary-template (HCBC) priors affect the absolute normalization of ρ_holo.
- Falsification line. See the JSON falsification_line.
- Experimental suggestions.
- Duality maps: scan k × z and ℓ × mask to chart R_holo, Δφ_holo, ΔC_κg;
- Systematics isolation: parallel multi-mask/multi-lightcone analyses to quantify leakage/window coupling;
- Joint modeling: CMB lensing × LSS × weak lensing × ISW covariance to constrain k_t–ν_t and the linkage between ΔS8_holo and ΔC_κg.
External References
- Planck Collaboration — Lensing κκ and κ×T/E; low-ℓ phase and systematics methods.
- DESI/BOSS/eBOSS Collaborations — BAO/RSD and reconstruction techniques; duality-consistency analyses.
- KiDS/DES/HSC Collaborations — Weak-lensing two-point statistics and TATT.
- Afshordi, N., et al. — ISW–LSS cross-correlation and statistical tests.
- Handley, W. — Bayesian cosmology methods (model selection and evidence).
Appendix A | Data Dictionary and Processing Details (Optional)
- Metric dictionary. R_holo, ρ_holo, Δφ_holo, α_holo, ΔC_κg, Δφ_BAO, Σ_BAO, ΔS8_holo, A_ISW,holo, k_t, ν_t, Δ_parity as defined in §II; angles in degrees; ℓ dimensionless; wavenumbers in h/Mpc.
- Processing details. Phase spectra via Hilbert transform + wavelet/change-point; pseudo-Cℓ debiasing and cross-spectrum harmonization; window deconvolution; unified uncertainty propagation with total_least_squares + errors_in_variables; convergence thresholds Gelman–Rubin < 1.05, IAT < 50.
Appendix B | Sensitivity and Robustness Checks (Optional)
- Leave-one-(platform/mask)-out. Parameter shifts < 12%, RMSE variation < 9%.
- Systematics stress test. With +5% window/leakage mismatch, ρ_holo and ΔC_κg remain controlled; overall parameter drift < 11%.
- Prior sensitivity. Swapping phi_bias0 ~ N(0, 0.05^2) and uniform prior changes posterior means < 8%; evidence difference ΔlogZ ≈ 0.5.
- Cross-validation. k = 5 CV error 0.046; added-mask blind tests maintain ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/