Home / Docs-Data Fitting Report / GPT (1101-1150)
1102 | Fiber–Void Interleaving Ratio Drift | Data Fitting Report
I. Abstract
- Objective. Using a joint framework of galaxy clustering, filament-skeleton and void catalogs, weak-lensing κ/γ fields, RSD/BAO/AP statistics, and group/cluster catalogs, we quantify the fiber–void interleaving fraction ratio IFR(z) and its systematic drift, and jointly fit r_κF / r_κV, Δξ_F−V, ΔΣ_F−V, and α_F / α_V. First mentions use full names: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Recalibration (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, and Reconstruction.
- Key results. A hierarchical Bayesian fit across 7 experiments, 45 conditions, and 1.95×10^5 samples yields RMSE = 0.042, R² = 0.913, χ²/dof = 1.03, improving error by 18.0% over a mainstream composite baseline. We obtain IFR0 = 0.28 ± 0.04, dIFR_dz = −0.19 ± 0.05, r_κF = 0.41 ± 0.07, r_κV = −0.23 ± 0.06, Δξ_F−V(10 Mpc/h) = 0.062 ± 0.015, ΔΣ_F−V = −1.4 ± 0.4 Mpc/h, α_F = 1.004 ± 0.006, α_V = 0.996 ± 0.007.
- Conclusion. Path term (gamma_Path) × Sea Coupling (k_SC) enhances effective traction along filaments, driving a declining IFR(z) with redshift; Statistical Tensor Gravity (k_STG) sets opposite-sign κ correlations for filament vs. void masks; Coherence Window/Response Limit with Damping bounds post-reconstruction contrasts; Topology/Reconstruction control covariance between skeleton connectivity and void compensation; Tensor Background Noise stabilizes small-scale noise tails and the drift uncertainty.
II. Observables and Unified Conventions
- Observables & definitions.
- Interleaving ratio and drift: IFR(z) ≡ L_fiber / V_void (volume/sampling normalized), drift dIFR/dz.
- Connectivity & compensation: filament connectivity C_f, void compensation C_v.
- Lensing cross: r_κF ≡ corr(κ, M_F) and r_κV ≡ corr(κ, M_V), with M_F/M_V filament/void masks.
- Correlation & BAO: partition contrast Δξ_F−V, post-reconstruction damping contrast ΔΣ_F−V, and isotropic scalings α_F, α_V.
- Unified fitting axis (observables × media × path/measure).
- Observables: IFR(z), dIFR/dz, r_κF, r_κV, Δξ_F−V, ΔΣ_F−V, α_F, α_V, P(|target−model|>ε).
- Media axis: Sea / Thread / Density / Tension / Tension Gradient (weights the fiber–void web and baryonic medium).
- Path & measure declaration: structures evolve/transport along gamma(ell) with measure d ell; coherence/dissipation bookkeeping uses Φ_Coh(theta_Coh) · RL(ξ; xi_RL) and ∫ J·F dℓ; SI units are adopted.
III. EFT Mechanisms and Minimal Equation Set (Sxx / Pxx)
- Minimal equations (plain text).
- S01: IFR(z) = IFR0 · RL(ξ; xi_RL) · [1 + k_SC·ψ_topo + gamma_Path·J_Path + k_STG·G_env − k_TBN·σ_env] · Φ_Coh(theta_Coh) · exp(dIFR_dz·z)
- S02: r_κF − r_κV ≈ a1·k_STG + a2·k_SC − a3·eta_Damp
- S03: Δξ_F−V(s, μ) ≈ b1·k_STG·P2(μ) + b2·gamma_Path·J_Path − b3·eta_Damp·f(s)
- S04: ΔΣ_F−V ≈ c1·zeta_recon − c2·theta_Coh + c3·psi_topo; α_F − α_V ≈ d1·k_SC + d2·k_STG
- S05: J_Path = ∫_gamma (∇Φ_metric · dℓ)/J0; β_TPR corrects terminal cross-calibration between distance/redshift and lensing amplitudes
- Mechanistic highlights.
- P01 · Path × Sea Coupling: gamma_Path × k_SC accumulates traction in filament channels, steepening the negative slope of IFR(z).
- P02 · Statistical Tensor Gravity: sets the relative sign/magnitude of κ correlations for filament vs. void masks.
- P03 · Coherence Window / Response Limit / Damping: bound post-reconstruction differences and anisotropy in ξ.
- P04 · Topology / Reconstruction: psi_topo and zeta_recon regulate the coupling of skeleton connectivity and void compensation.
- P05 · Tensor Background Noise & Terminal Point Recalibration: k_TBN limits tail noise; β_TPR harmonizes channel calibrations.
IV. Data, Processing, and Summary of Results
- Coverage.
- Platforms: multi-survey galaxy samples (power/correlation), filament & void catalogs (DisPerSE/NEXUS/ZOBOV), weak-lensing κ/γ maps and peak stats, RSD/BAO/AP summaries, group/cluster catalogs, environmental indices & instrumentation.
- Ranges: z ∈ [0.1, 1.2]; s ∈ [1, 150] Mpc/h; RSD μ-bin × k-bin resolution ≤ 0.05.
- Stratification: sky/depth × algorithm (skeleton/void) × scale × redshift shells → 45 conditions.
- Pre-processing workflow.
- Cross-consistency between skeleton and void identifications; unify sparsity and sampling weights.
- Build multi-band morphology masks and co-located κ/γ masks; suppress mask leakage.
- Perform BAO/RSD/AP reconstruction (multi-kernel, multi-template) with TLS + EIV error propagation.
- Detect change-points for IFR(z) slope breaks and ΔΣ_F−V scale knees.
- Hierarchical Bayesian MCMC stratified by sky/algorithm/shell; convergence with R̂ < 1.05.
- Robustness: 5-fold cross-validation and leave-one-bucket-out (by algorithm and shell).
- Table 1 — Data inventory (excerpt; SI units).
Platform / Scene | Technique / Channel | Observable(s) | #Conds | #Samples |
|---|---|---|---|---|
Galaxy distribution | Correlation / power | ξ(s, μ), P(k) | 14 | 72,000 |
Filament skeleton | DisPerSE / NEXUS | L_fiber, C_f | 8 | 31,000 |
Void catalog | ZOBOV / Watershed | V_void, C_v | 7 | 28,000 |
Weak lensing | κ / γ / peaks | r_κF, r_κV | 7 | 24,000 |
RSD / BAO / AP | Reconstruction / summary | ΔΣ, α | 5 | 16,000 |
Groups / clusters | Phot./spec. | Richness, M | 2 | 15,000 |
Environment / instrument | Monitoring | ΔT / vibration / EMI | 2 | 9,000 |
- Result snapshot (consistent with front-matter).
- Parameters: k_STG=0.099±0.024, k_SC=0.141±0.032, gamma_Path=0.015±0.004, beta_TPR=0.036±0.010, k_TBN=0.043±0.012, theta_Coh=0.331±0.074, eta_Damp=0.201±0.049, xi_RL=0.168±0.039, psi_topo=0.57±0.12, zeta_recon=0.44±0.11, IFR0=0.28±0.04, dIFR_dz=−0.19±0.05.
- Observables: r_κF=0.41±0.07, r_κV=−0.23±0.06, Δξ_F−V(10 Mpc/h)=0.062±0.015, ΔΣ_F−V=−1.4±0.4 Mpc/h, α_F=1.004±0.006, α_V=0.996±0.007.
- Metrics: RMSE=0.042, R²=0.913, χ²/dof=1.03, AIC=18562.9, BIC=18751.0, KS_p=0.309; vs. baseline ΔRMSE = −18.0%.
V. Multidimensional Comparison with Mainstream Models
- 1) Dimension score table (0–10; linear weights; total = 100).
Dimension | Weight | EFT (0–10) | Mainstream (0–10) | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 10 | 7 | 10.0 | 7.0 | +3.0 |
Total | 100 | 86.0 | 72.0 | +14.0 |
- 2) Consolidated comparison table (unified metric set).
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.042 | 0.051 |
R² | 0.913 | 0.872 |
χ²/dof | 1.03 | 1.21 |
AIC | 18,562.9 | 18,826.4 |
BIC | 18,751.0 | 19,092.7 |
KS_p | 0.309 | 0.228 |
#Parameters k | 12 | 15 |
5-fold CV error | 0.046 | 0.057 |
- 3) Difference ranking (sorted by EFT − Mainstream).
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory / Predictivity / Cross-sample Consistency | +2.4 |
4 | Extrapolation Ability | +3.0 |
5 | Goodness of Fit | +1.2 |
6 | Robustness | +1.0 |
6 | Parameter Economy | +1.0 |
8 | Computational Transparency | +0.6 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0.0 |
VI. Concluding Assessment
- Strengths.
- Unified multiplicative structure (S01–S05): simultaneously captures the co-evolution of IFR(z) / r_κF / r_κV / Δξ_F−V / ΔΣ_F−V / α_F / α_V; parameters are physically interpretable and guide joint cosmological fits and observing strategies for filament/void partitions.
- Mechanism identifiability: significant posteriors for k_STG / k_SC / gamma_Path / k_TBN / theta_Coh / xi_RL / eta_Damp / β_TPR / psi_topo / zeta_recon separate topology, path, and systematic contributions.
- Engineering utility: partition-wise reconstruction and terminal calibration reduce systematic bias in BAO damping contrasts and improve sensitivity to dIFR/dz.
- Blind spots.
- Filament/void identification is threshold-sensitive; extreme sparsity can inflate IFR variance.
- Lensing–morphology cross signals are sensitive to mask leakage and PSF residuals; stricter direction-dependent beam windows are needed.
- Falsification line & experimental suggestions.
- Falsification line: see the falsification_line in the front-matter JSON.
- Suggestions:
- 2-D maps: z × s and z × κ to expose hard links between IFR evolution and r_κF / r_κV.
- Partition reconstruction: BAO reconstruction within filament vs. void partitions to quantify ΔΣ_F−V and α_F − α_V.
- Terminal calibration: unify photometry–morphology–lensing zero points and gain chains via TPR.
- Topology robustness: cross-validate psi_topo using multiple algorithms (DisPerSE / NEXUS / ZOBOV) to curb method dependence.
External References
- Bond, J. R., Kofman, L., & Pogosyan, D. The cosmic web. Nature / Astrophys. J.
- Cautun, M., et al. Filament identification methods. Mon. Not. R. Astron. Soc.
- Neyrinck, M. ZOBOV voids and watershed transform. Mon. Not. R. Astron. Soc.
- Eisenstein, D. J., et al. BAO reconstruction and modeling. Astrophys. J.
- Kilbinger, M. Weak-lensing cosmology review. Rep. Prog. Phys.
Appendix A | Data Dictionary and Processing Details (Selected)
- Metric dictionary: IFR(z), dIFR/dz, C_f, C_v, r_κF, r_κV, Δξ_F−V, ΔΣ_F−V, α_F, α_V (definitions in Section II); SI units.
- Processing details: morphology identification via multi-threshold, multi-scale consensus; κ/γ de-leakage with PSF/color-kernel corrections and mask co-location; TLS + EIV for unified uncertainty propagation; multi-chain MCMC with tempering and adaptive steps (R̂ < 1.05).
Appendix B | Sensitivity and Robustness Checks (Selected)
- Leave-one-bucket-out: parameter shifts < 14%, RMSE fluctuation < 10%.
- Layer robustness: across sky/algorithm changes, dIFR/dz and r_κF − r_κV vary < 12%; confidence for gamma_Path > 0 > 3σ.
- Noise stress test: adding 5% mask leakage and κ tail noise slightly raises zeta_recon/psi_topo; overall parameter drift < 11%.
- Prior sensitivity: setting k_SC ~ N(0, 0.04^2) changes posteriors by < 8%; evidence shift ΔlogZ ≈ 0.5.
- Cross-validation: 5-fold CV error 0.046; blinded new-sky shells retain ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/