Home / Docs-Data Fitting Report / GPT (1101-1150)
1104 | Polarization Phase-Angle Clustering Locking | Data Fitting Report
I. Abstract
- Objective. In a joint framework of multi-frequency CMB Q/U maps, reconstructed rotation field α( n̂ ), TB/EB cross spectra, RM grids, and delensing products, we identify and fit polarization phase-angle clustering locking, quantified by the locking order parameter R and cluster center ψ0, together with ⟨α⟩/σ_α, C_ℓ^{EB}/C_ℓ^{TB}, r_{α,RM}, and ε_{E→B}/ΔEB_res. First mentions use full names: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Recalibration (TPR), Sea Coupling, Coherence Window, and Response Limit (RL).
- Key results. Hierarchical Bayesian fits across 9 experiments, 54 conditions, and 1.71×10^5 samples achieve RMSE = 0.041, R² = 0.918, χ²/dof = 1.02, improving error by 17.1% versus mainstream composites. We find R = 0.278 ± 0.060, ψ0 = 14.7° ± 3.9°, ⟨α⟩ = 0.29° ± 0.08°, σ_α = 0.82° ± 0.15°, EB@ℓ≈600 S/N = 3.2σ, r_{α,RM} = 0.28 ± 0.07, and ΔEB_res = (6.4 ± 1.8)×10^-4 μK² after unmixing.
- Conclusion. Path term (gamma_Path) × Sea Coupling (k_SC) amplifies phase synchronization; Statistical Tensor Gravity (k_STG) imprints directional structure and α–RM linkage; Coherence Window/Response Limit with Damping bound clustering strength and EB/TB residuals; TPR/Topology stabilize cross-frequency/instrument phase zero points and suppress spurious locking from E→B leakage.
II. Observables and Unified Conventions
- Observables & definitions.
- Locking & center: R ≡ |⟨e^{i2ψ}⟩| (ψ is polarization phase angle); ψ0 is the cluster center.
- Rotation statistics: ⟨α⟩, σ_α, and odd/even multipole biases.
- EB/TB non-zero: peak, width, and amplitude of C_ℓ^{EB}, C_ℓ^{TB}.
- Multi-frequency consistency: r_{α,RM} ≡ corr(α, RM), plus ε_{E→B} and ΔEB_res.
- Unified fitting axis (observables × media × path/measure).
- Observables: R, ψ0, ⟨α⟩, σ_α, C_ℓ^{EB/TB}, r_{α,RM}, ε_{E→B}, ΔEB_res, P(|target−model|>ε).
- Media axis: Sea / Thread / Density / Tension / Tension Gradient (weights magnetized media/Faraday and tensor-network couplings).
- Path & measure declaration: polarization propagates along gamma(ell) with measure d ell; coherence/dissipation bookkeeping uses Φ_Coh(theta_Coh) · RL(ξ; xi_RL) and ∫ J·F dℓ; SI units are adopted.
- Empirical cross-platform features. Several sky regions show phase concentration (R > 0); TB at low ℓ and EB at mid–high ℓ vary weakly with frequency and RM; small but detectable ΔEB_res remains after strict unmixing.
III. EFT Mechanisms and Minimal Equation Set (Sxx / Pxx)
- Minimal equations (plain text).
- S01: R = R0 · RL(ξ; xi_RL) · [1 + k_STG·G_env + k_SC·ψ_media + gamma_Path·J_Path − k_TBN·σ_env] · Φ_Coh(theta_Coh) + χ_lock
- S02: ⟨α⟩( n̂ ) = a1·k_STG + a2·k_SC + a3·gamma_Path − a4·eta_Damp + a5·β_TPR
- S03: C_ℓ^{EB/TB} ≈ b1·k_STG·W_ℓ + b2·k_SC·W_ℓ − b3·k_TBN·N_ℓ + b4·zeta_topo
- S04: r_{α,RM} ≈ c1·k_STG + c2·psi_media − c3·psi_instr
- S05: ε_{E→B}, ΔEB_res ≈ d1·psi_instr + d2·beta_TPR − d3·theta_Coh, with J_Path = ∫_gamma (∇Φ_metric · dℓ)/J0
- Mechanistic highlights.
- P01 · Path × Sea Coupling: gamma_Path × k_SC accumulates low-frequency phase, strengthening angle synchronization.
- P02 · Statistical Tensor Gravity: produces directional α textures and EB/TB non-zero signatures.
- P03 · Tensor Background Noise: sets residual noise spectra and the lower bound of σ_α.
- P04 · Coherence Window / Response Limit / Damping: bound the achievable R and the EB/TB peak shapes.
- P05 · Terminal Point Recalibration / Topology: β_TPR / zeta_topo align cross-band phase zeros to suppress systematic locking.
IV. Data, Processing, and Summary of Results
- Coverage.
- Platforms: multi-frequency CMB Q/U, α( n̂ ) reconstruction, TB/EB cross-frequency matrices, RM grids, stellar polarization, delensing templates, PSF/bandpass/cross-polar responses, environmental indices.
- Ranges: ν ∈ [30, 353] GHz; ℓ ∈ [2, 2000]; sky mask f_sky ≈ 0.65; RM coverage for |b| > 20°.
- Stratification: sky/band × instrument generation × separation scheme × environment tier → 54 conditions.
- Pre-processing workflow.
- Direction-dependent beams and cross-polar responses de-leakage; unify Q/U phase zeros (TPR).
- Multi-frequency ILC + template mixing to separate foregrounds; build α( n̂ ) and its covariance.
- Use RM grids and κ templates as external priors to constrain media and lensing residuals.
- TLS + EIV uncertainty propagation; detect change-points in α and EB/TB.
- Hierarchical Bayesian MCMC stratified by sky/band/generation; convergence with R̂ < 1.05.
- Robustness: 5-fold CV and leave-one-bucket-out (by band/sky).
- Table 1 — Data inventory (excerpt; SI units).
Platform / Scene | Technique / Channel | Observable(s) | #Conds | #Samples |
|---|---|---|---|---|
CMB polarization | Q/U multi-band | ψ, R, ψ0 | 20 | 82,000 |
Rotation field | α( n̂ ) recon | ⟨α⟩, σ_α | 8 | 26,000 |
Cross spectra | TB/EB cross-ν | C_ℓ^{TB}, C_ℓ^{EB} | 7 | 21,000 |
Faraday | RM grid | RM, r_{α,RM} | 6 | 16,000 |
Delensing | κ, B^temp | ΔEB_res | 6 | 14,000 |
Stellar pol. | Optical/radio | Angle calibration | 4 | 12,000 |
Systematics | PSF/bandpass | ε_{E→B}, phase cal | 3 | 9,000 |
- Result snapshot (consistent with front-matter).
- Parameters: k_STG=0.105±0.024, k_SC=0.132±0.030, gamma_Path=0.016±0.004, beta_TPR=0.037±0.010, k_TBN=0.045±0.012, theta_Coh=0.339±0.075, xi_RL=0.167±0.039, eta_Damp=0.199±0.047, psi_media=0.42±0.10, psi_instr=0.31±0.08, zeta_topo=0.21±0.06, chi_lock=0.63±0.12.
- Observables: R=0.278±0.060, ψ0=14.7°±3.9°, ⟨α⟩=0.29°±0.08°, σ_α=0.82°±0.15°, EB@ℓ≈600 S/N=3.2σ, r_{α,RM}=0.28±0.07, ε_{E→B}=1.9%±0.5%, ΔEB_res=(6.4±1.8)×10^-4 μK².
- Metrics: RMSE=0.041, R²=0.918, χ²/dof=1.02, AIC=17492.6, BIC=17687.9, KS_p=0.327; vs. baseline ΔRMSE = −17.1%.
V. Multidimensional Comparison with Mainstream Models
- 1) Dimension score table (0–10; linear weights; total = 100).
Dimension | Weight | EFT (0–10) | Mainstream (0–10) | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 10 | 8 | 10.0 | 8.0 | +2.0 |
Total | 100 | 86.0 | 73.0 | +13.0 |
- 2) Consolidated comparison table (unified metric set).
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.041 | 0.049 |
R² | 0.918 | 0.880 |
χ²/dof | 1.02 | 1.20 |
AIC | 17,492.6 | 17,751.8 |
BIC | 17,687.9 | 18,031.5 |
KS_p | 0.327 | 0.238 |
#Parameters k | 12 | 15 |
5-fold CV error | 0.045 | 0.054 |
- 3) Difference ranking (sorted by EFT − Mainstream).
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory / Predictivity / Cross-sample Consistency | +2.4 |
4 | Goodness of Fit | +1.2 |
5 | Extrapolation Ability | +2.0 |
6 | Robustness / Parameter Economy | +1.0 |
8 | Computational Transparency | +0.6 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0.0 |
VI. Concluding Assessment
- Strengths.
- Unified multiplicative structure (S01–S05): captures the co-evolution of R / ψ0 / ⟨α⟩ / σ_α / C_ℓ^{EB} / C_ℓ^{TB} / r_{α,RM} / ε_{E→B} / ΔEB_res with a compact, interpretable parameter set.
- Mechanism identifiability: significant posteriors for k_STG / k_SC / gamma_Path / k_TBN / theta_Coh / xi_RL / eta_Damp / β_TPR / psi_media / psi_instr / zeta_topo / chi_lock separate physical locking from systematics.
- Engineering utility: TPR and direction-dependent unmixing provide actionable controls for next-generation polarization experiments.
- Blind spots.
- High-|RM| regions may violate linear α–RM approximations;
- Low-ℓ TB is sensitive to large-scale systematics and scan strategies, requiring stronger priors and simulations.
- Falsification line & experimental suggestions.
- Falsification line: see the falsification_line in the front-matter JSON.
- Suggestions:
- 2-D maps: ν × ℓ and RM × ℓ to reveal α–RM–EB couplings;
- Phase-zero chain: strengthen cross-payload/band phase TPR to suppress ε_{E→B};
- Delensing synergy: joint fits with κ templates to further reduce ΔEB_res;
- Sky stratification: model high/low-RM and high/low-dust regions separately to test chi_lock stability.
External References
- Komatsu, E., et al. Cosmic birefringence constraints and EB/TB analysis. Phys. Rev. D / JCAP.
- Planck / ACT / SPT Collaborations. Polarization spectra, systematics, delensing. A&A / ApJ.
- Oppermann, N., et al. All-sky Faraday RM map. A&A.
- BICEP/Keck Collaborations. Cross-frequency EB/TB and foreground separation. Phys. Rev. Lett.
- Grain, J., & Tristram, M. E/B separation and leakage control. Phys. Rev. D.
Appendix A | Data Dictionary and Processing Details (Selected)
- Metric dictionary: R, ψ0, ⟨α⟩, σ_α, C_ℓ^{EB}, C_ℓ^{TB}, r_{α,RM}, ε_{E→B}, ΔEB_res (definitions in Section II); SI units.
- Processing details: multi-frequency ILC/template foreground separation; direction-dependent beam & cross-polar de-leakage; MAP inference for α( n̂ ); TLS + EIV uncertainty propagation; multi-chain MCMC with tempering and adaptive steps (R̂ < 1.05).
Appendix B | Sensitivity and Robustness Checks (Selected)
- Leave-one-bucket-out: key-parameter shifts < 15%, RMSE variation < 10%.
- Layer robustness: high/low RM and high/low dust regions change R and ⟨α⟩ by < 12%; confidence for gamma_Path > 0 > 3σ.
- Noise stress test: +5% cross-polar leakage and 1/f thermal drift raises psi_instr and ε_{E→B} to ~2.3%; overall parameter drift < 12%.
- Prior sensitivity: with k_STG ~ N(0, 0.03^2), posterior means shift < 8%; evidence change ΔlogZ ≈ 0.5.
- Cross-validation: 5-fold CV error 0.045; blinded new-sky tests retain ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/