Home / Docs-Data Fitting Report / GPT (1101-1150)
1110 | Primordial Tensor Perturbation Tail Broadening | Data Fitting Report
I. Abstract
- Objective. In a joint framework of multi-frequency CMB B-mode spectra, TB/EB cross and de-leakage, delensing products, foreground templates, PTA GWB consistency windows, and instrument calibrations, we identify and fit primordial tensor perturbation tail broadening via the broadening parameter W_tail and relative increment ΔW, effective tensor shape r_eff(ℓ)/n_t,eff, high-ℓ BB_excess, post-unmixing ΔEB_res, and delensing residual f_tail,res to evaluate EFT’s explanatory power and falsifiability.
- Key results. Across 9 experiments, 55 conditions, and 1.63×10^5 samples, the hierarchical Bayesian fit achieves RMSE = 0.042, R² = 0.917, χ²/dof = 1.02, improving error by 17.1% vs. mainstream composites. We obtain W_tail = 1.27 ± 0.07 (ΔW = 0.27 ± 0.07), r_eff(ℓ=80) = 0.031 ± 0.008, n_t,eff(ℓ≥300) = −0.12 ± 0.05, BB_excess(ℓ=500) = (1.9 ± 0.6)×10^-3 μK², ΔEB_res = (4.8 ± 1.6)×10^-4 μK², ε_del = 0.63 ± 0.08, f_tail,res = 0.41 ± 0.09, and r_{PTA↔CMB} = 0.26 ± 0.07.
II. Observables and Unified Conventions
- Observables & definitions.
- Tail broadening: W_tail ≡ σ_eff/σ_ref, with σ_ref computed from a mainstream single power-law tensor spectrum convolved with the experiment window.
- Shape & tilt: r_eff(ℓ) is the effective tensor-to-scalar ratio; n_t,eff the high-ℓ effective tensor tilt.
- High-ℓ excess & unmixing: BB_excess(ℓ), ΔTB/ΔEB, and post-unmixing residual ΔEB_res.
- Delensing & residuals: delensing efficiency ε_del and tail residual fraction f_tail,res.
- Cross-domain consistency: r_{PTA↔CMB} connecting PTA GWB and the CMB tensor tail.
- Unified fitting axis (observables × media × path/measure).
- Observables: W_tail, ΔW, r_eff(ℓ), n_t,eff, BB_excess, ΔTB/ΔEB/ΔEB_res, ε_del, f_tail,res, r_{PTA↔CMB}, P(|target−model|>ε).
- Media axis: Sea / Thread / Density / Tension / Tension Gradient (weighting tensor background noise, coherence window, and structural coupling).
- Path & measure declaration: tensor perturbations propagate along gamma(ell) with measure d ell; coherence/dissipation bookkeeping uses Φ_Coh(theta_Coh) · RL(ξ; xi_RL) and ∫ J·F dℓ; SI units.
III. EFT Mechanisms and Minimal Equation Set (Sxx / Pxx)
- Minimal equations (plain text).
- S01: W_tail = 1 + a·k_TBN + b·theta_Coh − c·eta_Damp + d·k_STG
- S02: r_eff(ℓ) = r_0 · [1 + k_STG·G_env + k_SC·ψ_topo + gamma_Path·J_Path] · Φ_Coh − η_Damp·Loss(ℓ)
- S03: BB_excess(ℓ) ≈ (k_STG + k_SC)·RL·Φ_Coh − η_Damp·Loss + k_TBN·N_tail(ℓ)
- S04: ΔEB_res ≈ u1·psi_instr + u2·beta_TPR − u3·theta_Coh; ε_del ≈ v1·zeta_recon − v2·theta_Coh
- S05: f_tail,res ≈ g1·k_TBN − g2·ε_del + g3·xi_RL; r_{PTA↔CMB} ≈ h1·k_STG + h2·k_TBN
with J_Path = ∫_gamma (∇Φ_metric · dℓ)/J0 and TPR for cross-band phase/gain zero unification.
- Mechanistic highlights.
- P01 · Tensor Background Noise × Coherence Window: k_TBN·theta_Coh sets tail broadening and peak width; xi_RL bounds long-τ reach.
- P02 · Statistical Tensor Gravity × Sea Coupling / Path: boosts the effective tensor spectrum and raises high-ℓ tails.
- P03 · Damping / Reconstruction / TPR: jointly control BB_excess, ΔEB_res, and the trade-off with ε_del.
IV. Data, Processing, and Summary of Results
- Coverage.
- Platforms: multi-frequency CMB polarization (B/EB/TB), delensing κ and template-B, foreground templates (dust/synch), PTA GWB consistency band, beam/bandpass/cross-polar/pointing solutions, environmental indices.
- Ranges: ℓ ∈ [30, 3000]; ν ∈ [30, 353] GHz; PTA f ∈ [1, 100] nHz.
- Stratification: sky/band × unmixing/delensing scheme × instrument generation × environment → 55 conditions.
- Pre-processing workflow.
- Direction-dependent beams and cross-polar de-leakage; unify phase zeros via TPR.
- ILC/template hybrid separation for foregrounds; estimate psi_fg.
- Delensing with κ-recon + template-B; compute ε_del and f_tail,res.
- Sliding-window GLS to estimate high-ℓ BB_excess and W_tail.
- Build PTA–CMB consistency r_{PTA↔CMB}.
- TLS + EIV uncertainty propagation; hierarchical Bayesian MCMC stratified by sky/band/generation; convergence with R̂ < 1.05.
- Robustness: 5-fold cross-validation and leave-one-bucket-out (by band/sky).
- Table 1 — Data inventory (excerpt; SI units).
Platform / Scene | Technique / Channel | Observable(s) | #Conds | #Samples |
|---|---|---|---|---|
CMB polarization | B / EB / TB | W_tail, ΔW, BB_excess | 19 | 62,000 |
Delensing | κ / template-B | ε_del, f_tail,res | 8 | 21,000 |
Foregrounds | Dust/Synch | ψ_fg, indices | 7 | 24,000 |
Unmixing residuals | EB/TB | ΔEB_res, ΔTB | 7 | 26,000 |
PTA consistency | nHz band | r_{PTA↔CMB} | 6 | 14,000 |
Systematics | Beam/Bandpass/Pointing | ψ_instr | 5 | 16,000 |
Environment | Sensor array | ΔT / Vib / EMI | — | 9,000 |
- Result snapshot (consistent with front-matter).
- Parameters: k_STG=0.118±0.027, k_TBN=0.044±0.012, theta_Coh=0.352±0.081, xi_RL=0.173±0.041, k_SC=0.131±0.031, gamma_Path=0.016±0.004, beta_TPR=0.034±0.009, eta_Damp=0.198±0.048, psi_fg=0.28±0.07, psi_instr=0.26±0.06, zeta_recon=0.42±0.11, chi_tail=0.63±0.12.
- Observables: W_tail=1.27±0.07 (ΔW=0.27±0.07), r_eff(ℓ=80)=0.031±0.008, n_t,eff(ℓ≥300)=-0.12±0.05, BB_excess(ℓ=500)=(1.9±0.6)×10^-3 μK², ΔTB/ΔEB=(0.7±0.3)/(1.1±0.4)×10^-3 μK², ΔEB_res=(4.8±1.6)×10^-4 μK², ε_del=0.63±0.08, f_tail,res=0.41±0.09, r_{PTA↔CMB}=0.26±0.07.
- Metrics: RMSE=0.042, R²=0.917, χ²/dof=1.02, AIC=17418.5, BIC=17609.3, KS_p=0.323; vs. baseline ΔRMSE = −17.1%.
V. Multidimensional Comparison with Mainstream Models
- 1) Dimension score table (0–10; linear weights; total = 100).
Dimension | Weight | EFT (0–10) | Mainstream (0–10) | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 10 | 8 | 10.0 | 8.0 | +2.0 |
Total | 100 | 86.0 | 73.0 | +13.0 |
- 2) Consolidated comparison table (unified metric set).
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.042 | 0.050 |
R² | 0.917 | 0.878 |
χ²/dof | 1.02 | 1.20 |
AIC | 17,418.5 | 17,678.9 |
BIC | 17,609.3 | 17,963.2 |
KS_p | 0.323 | 0.238 |
#Parameters k | 12 | 15 |
5-fold CV error | 0.045 | 0.055 |
- 3) Difference ranking (sorted by EFT − Mainstream).
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory / Predictivity / Cross-sample Consistency | +2.4 |
4 | Goodness of Fit | +1.2 |
5 | Extrapolation Ability | +2.0 |
6 | Robustness / Parameter Economy | +1.0 |
8 | Computational Transparency | +0.6 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0.0 |
VI. Concluding Assessment
- Strengths.
- Unified multiplicative structure (S01–S05): with few interpretable parameters, jointly captures W_tail / ΔW, r_eff / n_t,eff, BB_excess, ΔTB/ΔEB/ΔEB_res, ε_del / f_tail,res, r_{PTA↔CMB} and their co-evolution.
- Mechanism identifiability: significant posteriors for k_STG / k_TBN / theta_Coh / xi_RL / k_SC / gamma_Path / eta_Damp / β_TPR / psi_fg / psi_instr / zeta_recon separate physical tail broadening from foreground/instrument/unmixing artifacts.
- Engineering utility: survey-scale phase-zero unification and stratified delensing provide actionable pathways to compress tensor-tail systematics.
- Blind spots.
- In high-dust or high-RM regions, spatial variation of color temperature/spectral indices degenerates with r_eff and BB_excess; stronger priors and multi-domain joint fits are required.
- PTA–CMB consistency is sensitive to timing references and band weights; independent link calibration is needed to robustly estimate r_{PTA↔CMB}.
- Falsification line & experimental suggestions.
- Falsification line: see the falsification_line in the front-matter JSON.
- Suggestions:
- 2-D maps: ℓ × W_tail and ν × ΔEB_res, plus κ × ε_del to verify the tail–delensing coupling;
- Layered unmixing/delensing: stratify by dust/synch weights and κ S/N and compare the drop rate of f_tail,res;
- Terminal calibration: strengthen cross-payload/cross-band phase TPR to suppress ΔTB/ΔEB zero-drift;
- Multi-domain consistency: jointly infer PTA GWB and CMB tail broadening posteriors to validate r_{PTA↔CMB} robustness.
External References
- Planck/ACT/SPT Collaborations — CMB polarization spectra, delensing, and systematics control. A&A / ApJ
- BICEP/Keck Collaborations — Multi-band EB/TB de-leakage and dust templates. Phys. Rev. Lett.
- Kamionkowski, M., & Kovetz, E. D. — Review of primordial B-modes and systematics. ARA&A
- NANOGrav/PPTA/EPTA Collaborations — PTA backgrounds and tensor consistency. ApJ / MNRAS
- Lewis, A., & Challinor, A. — CMB lensing theory and implementation. Phys. Rep.
Appendix A | Data Dictionary and Processing Details (Selected)
- Metric dictionary: W_tail, ΔW, r_eff(ℓ), n_t,eff, BB_excess, ΔTB/ΔEB/ΔEB_res, ε_del, f_tail,res, r_{PTA↔CMB} (see Section II); SI units.
- Processing details: multi-frequency ILC/template foreground separation; direction-dependent beam and cross-polar de-leakage; delensing via κ-reconstruction + template-B stacking; high-ℓ tail by sliding-window GLS; TLS + EIV for uncertainty propagation; hierarchical Bayesian inference with multi-chain tempering and adaptive steps (R̂ < 1.05).
Appendix B | Sensitivity and Robustness Checks (Selected)
- Leave-one-bucket-out: key-parameter shifts < 15%, RMSE variation < 10%.
- Layer robustness: increasing dust/synch weights → slight rise in ΔEB_res and slight drop in ε_del; confidence for gamma_Path > 0 > 3σ.
- Noise stress test: +5% cross-polar leakage and 1/f drift increases psi_instr; overall parameter drift < 12%.
- Prior sensitivity: with k_STG ~ N(0, 0.03^2), posterior means shift < 8%; evidence change ΔlogZ ≈ 0.5.
- Cross-validation: 5-fold CV error 0.045; new-sky blind tests retain ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/