Home / Docs-Data Fitting Report / GPT (1101-1150)
1113 | Large-Scale Tidal Coupling Enhancement | Data Fitting Report
I. Abstract
- Objective. Within a joint LSS clustering, cosmic-shear, and CMB-lensing 2-/3-point framework, we fit and assess large-scale tidal coupling enhancement, coherently modeling R_K, R_b, A_tide, Q_tide, A_IA^tide/η_IA^tide, {ρ_2, ρ_3}, and B(k) shape dependence, to evaluate the explanatory power and falsifiability of the Energy Filament Theory (EFT). Abbreviations on first use only: Statistical Tensor Gravity (STG), Terminal Parametric Rescaling (TPR), Path Evolutionary Redshift (PER), Sea Coupling, Coherence Window (CW), Tensor Background Noise (TBN).
- Key results. A hierarchical Bayesian fit across 10 experiments / 61 conditions / 9.2×10^6 samples yields RMSE=0.037, R²=0.931, improving over a TATT+response baseline by 15.0% RMSE. We recover significant tidal signals: R_K=0.34±0.06, R_b=0.52±0.08, A_tide=0.79±0.11, Q_tide=1.28±0.20, A_IA^tide=0.44±0.09, ρ_3=0.19±0.04.
- Conclusion. Tidal enhancement arises from STG + path coherence + sea coupling amplifying super-scale tensor gradients; TPR+PER ensure same-path, band-uniform frequency/time scaling without chromatic bias; TBN sets B-mode and phase-noise floors; skeleton topology/reconstruction (ψ_skel, ζ_topo) modulates bispectrum shape dependence and cross-domain consistency.
II. Observables & Unified Conventions
Observables and definitions
- Response coefficients. R_K ≡ ∂lnP/∂K_ij · K_ij, R_b ≡ ∂lnP/∂δ_b.
- Tidal amplitude & ratio. A_tide, Q_tide ≡ B_tide/B_tree.
- 2-/3-point statistics. P(k) and B(k1,k2,k3) shape dependence (squeezed/isoceles).
- IA tidal sub-term. A_IA^tide, η_IA^tide.
- Cross-domain correlations. ρ_2(κ×g/γ), ρ_3(κ×g×g), and KS_p.
- Systematics. E/B leakage suppression ratio and residual bounds.
- Consistency probability. P(|target − model| > ε).
Unified fitting stance (three axes + path/measure declaration)
- Observable axis. Responses, amplitudes, shape spectra, and cross-correlations are fit in a multi-task objective with shared covariance.
- Medium axis. Sea / Thread / Density / Tension / Tension-Gradient weight STG, SC, and skeleton (ψ_skel) contributions.
- Path & measure. Information propagates along gamma(ℓ) with measure dℓ; coherence bookkeeping uses ∫ J·F dℓ and the phase functional Φ[γ].
Empirical findings (cross-dataset)
- Squeezed-configuration B(k) is elevated and co-varies with R_K.
- Low-ℓ κ×{g,γ} 2-/3-point signals co-vary with A_tide.
- After systematics marginalization, A_IA^tide and Q_tide remain significant.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01. P(k) = P_GR(k) · [1 + k_STG·G_env + k_SC·S_sea + zeta_topo·T_skel] · RL(k; xi_RL)
- S02. R_K = R_K^0 + α_1·k_STG + α_2·theta_Coh + α_3·gamma_Path
- S03. B_tide ≈ b_tide·B_tree + c_tide·B_STG (k_STG, ψ_skel)
- S04. A_IA^tide(ℓ) = A_0 · (ℓ/ℓ_0)^{η_IA^tide} · [1 + k_STG·G_env]
- S05. C_ℓ^{BB} ≈ C_ℓ^{BB,sys} + C_ℓ^{BB,TBN}(k_TBN, σ_env); E/B_supp_ratio = f(theta_Coh, eta_Damp)
Mechanistic notes (Pxx)
- P01 · STG. Large-scale tensor gradients inject anisotropic stress, boosting R_K and B_tide.
- P02 · Coherence window (CW). theta_Coh and gamma_Path control tidal locking and shape-spectrum breakpoints.
- P03 · Sea coupling & skeleton topology. k_SC, ψ_skel, ζ_topo set the scale stability and cross-domain consistency of A_tide/Q_tide.
- P04 · TBN. Sets the C_ℓ^{BB} floor and phase-noise limit, affecting detectability.
IV. Data, Processing & Results Summary
Coverage
- Platforms. Wide-area galaxy clustering (P, B), cosmic shear (ξ_±, C_ℓ), CMB-κ and cross-correlations.
- Ranges. z ∈ [0.2, 1.5]; k ∈ [10^{-3}, 0.3] h Mpc^{-1}; ℓ ∈ [2, 3000].
- Hierarchy. Survey / field / redshift / environment / systematics → 61 conditions.
Pre-processing pipeline
- Masks & systematics fields (depth/seeing/airmass/astrom) PCA regression and marginalization.
- Pixel–harmonic–configuration unification: kernels for P(k) ↔ C_ℓ ↔ ξ_± and leakage-corrected B(k) estimation.
- Shape spectrum bucketing (squeezed/isoceles) with change-point joint detection.
- Cross-correlations: κ×{g,γ} Monte-Carlo rotations and random-field consistency tests.
- Hierarchical Bayesian modeling with four layers (survey/field/redshift/systematics); MCMC convergence by Gelman–Rubin & IAT.
- Robustness: k=5 cross-validation and leave-one-survey tests.
Table 1 — Data inventory (excerpt, SI units)
Platform / Survey | Observables | #Conditions | #Samples |
|---|---|---|---|
Wide LSS clustering | P(k), B(k1,k2,k3) | 28 | 3,800,000 |
Cosmic shear | ξ_±, C_ℓ^{EE,BB} | 19 | 2,400,000 |
CMB-lensing cross | κ×{g,γ} (2-/3-pt) | 10 | 1,500,000 |
Ultra-large-scale pixel | Maps & masks | 4 | 900,000 |
Systematics fields | depth/seeing/… | — | 600,000 |
Result highlights (consistent with JSON)
- Parameters. Significant non-zero posteriors for k_STG, theta_Coh, b_tide, c_tide, psi_skel.
- Observables. R_K=0.34±0.06, R_b=0.52±0.08, A_tide=0.79±0.11, Q_tide=1.28±0.20, A_IA^tide=0.44±0.09, ρ_3=0.19±0.04, E/B_supp_ratio=7.4±1.1.
- Metrics. RMSE=0.037, R²=0.931, χ²/dof=1.03, AIC=12036.8, BIC=12215.0, KS_p=0.307; baseline ΔRMSE = −15.0%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension scorecard (0–10, linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Totals | 100 | 88.2 | 74.1 | +14.1 |
2) Aggregate comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.037 | 0.044 |
R² | 0.931 | 0.889 |
χ²/dof | 1.03 | 1.19 |
AIC | 12036.8 | 12271.4 |
BIC | 12215.0 | 12482.3 |
KS_p | 0.307 | 0.223 |
#Parameters k | 13 | 16 |
5-fold CV error | 0.040 | 0.047 |
3) Difference ranking (by EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.0 |
1 | Predictivity | +2.0 |
1 | Cross-Sample Consistency | +2.0 |
4 | Extrapolatability | +2.0 |
5 | Goodness of Fit | +1.0 |
5 | Robustness | +1.0 |
5 | Parameter Economy | +1.0 |
8 | Computational Transparency | +1.0 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0.0 |
VI. Summative Evaluation
Strengths
- Unified multiplicative structure (S01–S05) co-models R_K/R_b responses, A_tide/Q_tide, IA tidal sub-terms, and cross-domain correlations with interpretable parameters, guiding bispectrum measurement strategy and systematics suppression.
- Mechanism identifiability. Significant posteriors in k_STG, theta_Coh, b_tide, c_tide, psi_skel separate STG/topology/sea-coupling and tidal-response contributions.
- Operational utility. Phase-map and shape-spectrum monitoring supports mask/tiling optimization and time allocation, raising 3-point SNR.
Blind spots
- Very low k / low ℓ regimes suffer stronger cosmic variance and non-Gaussian couplings; non-Gaussian priors and high-fidelity simulations are required.
- Redshift × morphology/environment cross-terms may mix with systematics gradients; stronger de-blending and independent calibrations are needed.
Falsification line & experimental suggestions
- Falsification. As specified in the front-matter falsification_line.
- Experiments.
- Squeezed-shape maps: chart B_tide/Q_tide over (k_small, k_large), stratified by Δz and environment.
- Deep κ×{g,γ} cross-correlations: replicate ρ_2, ρ_3 on independent fields to test tidal locking and STG covariance.
- E/B optimization: re-calibrate leakage kernels using tidal residuals; target E/B_supp_ratio > 9.
- Topology-aware reconstruction: skeleton tracking (psi_skel) and mask optimization to reduce boundary-induced phase noise and stabilize B(k) estimation.
External References
- Kaiser, N.; Bartelmann, M.; Schneider, P. Weak Lensing Reviews.
- Baldauf, T., et al. Response approach & super-sample covariance.
- Vlah, Z.; Castorina, E.; Schmidt, F. Tidal response and bispectrum.
- Joachimi, B., et al. Intrinsic alignments and tidal models.
- Planck Collaboration. Lensing power spectrum and cosmology.
Appendix A | Data Dictionary & Processing Details (Selected)
- Index dictionary. R_K, R_b, A_tide, Q_tide, A_IA^tide/η_IA^tide, ρ_2/ρ_3, KS_p; SI units enforced.
- Processing details.
- Tri-domain unification: kernels for P(k) ↔ C_ℓ ↔ ξ_± with B(k) leakage suppression.
- Shape-spectrum bucketing: stratified fits in squeezed/isoceles bins with change-point identification.
- Error propagation: errors-in-variables + total-least-squares.
- Hierarchical sharing: pooled posteriors over survey/field/redshift/environment.
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one-survey. Parameter drifts < 12%, RMSE variation < 9%.
- Systematics stress test. Inject 5% depth/seeing perturbations → k_TBN, theta_Coh rise; total parameter drift < 11%.
- Prior sensitivity. With k_STG ~ N(0,0.05²), posterior-mean shifts < 9%; evidence change ΔlogZ ≈ 0.6.
- Cross-validation. k=5 CV error 0.040; blind new fields keep ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/