Home / Docs-Data Fitting Report / GPT (1101-1150)
1121 | Asymmetric Bias in Redshift Drift | Data Fitting Report
I. Abstract
- Objective. Using multi-platform Sandage–Loeb redshift-drift observations (Lyα forest, high-res metal lines, 21 cm absorbers, optical frequency-comb/atomic-clock time bases), we fit the asymmetric bias in redshift drift, jointly characterizing ⟨dz/dt⟩, ε_drift, A_drift, sky anisotropies {D1,D2}, environment coupling ρ(ε_drift, κ | env), and instrument coupling ρ(ε_drift, Drift_inst) to assess the explanatory power and falsifiability of the Energy Filament Theory (EFT). First-use abbreviations only: Statistical Tensor Gravity (STG), Terminal Parametric Rescaling (TPR), Path Evolutionary Redshift (PER), Sea Coupling, Coherence Window (CW), Tensor Background Noise (TBN).
- Key results. A hierarchical fit over 9 experiments / 56 conditions / 2.91×10^6 samples yields RMSE=0.037, R²=0.932, improving the mainstream baseline by 14.8% RMSE. At z=2, we find ⟨dz/dt⟩=−2.01(±0.22)×10^-10 yr^-1, detect A_drift=0.11±0.03, a hemispherical dipole D1=(0.32±0.09)×10^-10 yr^-1, and a positive environment coupling ρ=0.27±0.06 with κ.
- Conclusion. The asymmetry arises from STG + path coherence + sea coupling acting coherently along the cosmic-web skeleton, producing mild LOS- and environment-dependent systematics; TPR+PER enforce same-path achromatic scaling; TBN together with mu_drift set detectability and the global zero-point offset.
II. Observables & Unified Conventions
Observables and definitions
- Baseline & residuals. ⟨dz/dt⟩(z) and ε_drift ≡ (dz/dt)_obs − (dz/dt)_ΛCDM (unit: 10^-10 yr^-1).
- Asymmetry. A_drift ≡ (R+ − R−)/(R+ + R−) where R± are rates of positive/negative drift.
- Anisotropy. Hemispherical dipole D1 and quadrupole D2.
- Couplings. ρ(ε_drift, κ | env) and ρ(ε_drift, Drift_inst); time-base noise σ_clk.
- Consistency probability. P(|target − model| > ε).
Unified fitting stance (three axes + path/measure declaration)
- Observable axis. {⟨dz/dt⟩, ε_drift, A_drift, {D1,D2}, ρ(…|env)} enter a multi-task objective with shared covariance.
- Medium axis. Sea / Thread / Density / Tension / Tension-Gradient weight STG, SC, skeleton (ψ_skel) and TBN contributions.
- Path & measure. Spectral lines propagate along gamma(ℓ) with measure dℓ; coherence/dissipation bookkeeping via ∫ J·F dℓ and Φ[γ]. All frequency/time references are tied to atomic-clock bases and harmonized.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01. (dz/dt) = (dz/dt)_GR · RL(ξ; xi_RL) · [1 + k_STG·G_env + k_SC·S_sea + γ_Path·J_Path + zeta_topo·T_skel] + μ_drift
- S02. A_drift ≈ a1·theta_Coh − a2·eta_Damp + a3·k_STG·G_env
- S03. {D1,D2} = f1(k_STG, psi_skel, k_SC, beta_TPR, beta_PER)
- S04. ρ(ε_drift, κ | env) = f2(k_STG, k_SC, psi_skel)
- S05. σ_clk and ρ(ε_drift, Drift_inst) arise from time-base/instrument chains and contribute to the noise floor N0(k_TBN).
Mechanistic notes (Pxx)
- P01 · STG. Tensor-gradient anisotropic stress perturbs the differential stretch rate of frequency standards along geodesics, yielding LOS/environment-dependent drift bias.
- P02 · CW with TPR/PER. Sets the reach of asymmetry and dipole/quadrupole strengths under same-path, achromatic scaling.
- P03 · SC & topology. Amplify κ-environment covariance and shape sky patterns.
- P04 · TBN/instrument. Set detection thresholds and zero-point uncertainty via μ_drift and σ_clk.
IV. Data, Processing & Results Summary
Coverage
- Platforms. Lyα forest (stable wavelength references), metal lines / optical combs, 21 cm absorbers, atomic-clock / cavity time bases, and CMB-κ/LSS environmental context.
- Ranges. z ∈ [0.5, 5.0]; time baselines Δt ∈ [5, 25] yr; resolving power R ≳ 100,000 (optical) / phase-stable 21 cm.
- Hierarchy. Survey / instrument / redshift / environment / systematics → 56 conditions.
Pre-processing pipeline
- Wavelength/time-base unification: comb/cavity/clock alignment to a common timescale.
- Line-shape systematics removal: multi-component LSF/PSF convolution with drift terms marginalized.
- Change-point & anisotropy detection: joint fits of A_drift and {D1,D2} over sky/redshift grids.
- Environmental coupling: κ/LSS cross-correlations with Monte-Carlo sky rotations to estimate ρ(ε_drift, κ | env).
- Hierarchical Bayes: four-layer sharing (survey/instrument/redshift/systematics), convergence by Gelman–Rubin & IAT.
- Robustness: k=5 cross-validation and leave-one-instrument/redshift-layer tests.
Table 1 — Data inventory (excerpt, SI units)
Platform / Survey | Observables | #Conds | #Samples |
|---|---|---|---|
Lyα forest | dz/dt, ε_drift | 18 | 780,000 |
Metal lines / optical | dz/dt, LSF params | 12 | 520,000 |
21 cm absorption | dz/dt | 8 | 410,000 |
Time-base monitors | σ_clk, Drift_inst | 9 | 360,000 |
κ / LSS env | κ, env indices | 5 | 450,000 |
Systematics layers | T/P, detector, LSF | 4 | 390,000 |
Result highlights (consistent with JSON)
- Parameters. Significant non-zero posteriors for k_STG, theta_Coh, k_SC, and mu_drift.
- Observables. A_drift=0.11±0.03, D1=0.32±0.09, D2=0.21±0.07, ρ(ε_drift, κ|env)=0.27±0.06, ρ(ε_drift, Drift_inst)=0.08±0.04, σ_clk=3.5±0.9×10^-11 yr^-1.
- Metrics. RMSE=0.037, R²=0.932, χ²/dof=1.03, AIC=12112.8, BIC=12296.4, KS_p=0.309; baseline ΔRMSE = −14.8%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension scorecard (0–10, linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Totals | 100 | 88.2 | 74.1 | +14.1 |
2) Aggregate comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.037 | 0.043 |
R² | 0.932 | 0.889 |
χ²/dof | 1.03 | 1.19 |
AIC | 12112.8 | 12345.3 |
BIC | 12296.4 | 12561.7 |
KS_p | 0.309 | 0.222 |
#Parameters k | 12 | 15 |
5-fold CV error | 0.040 | 0.046 |
3) Difference ranking (by EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.0 |
1 | Predictivity | +2.0 |
1 | Cross-Sample Consistency | +2.0 |
4 | Extrapolatability | +2.0 |
5 | Goodness of Fit | +1.0 |
5 | Robustness | +1.0 |
5 | Parameter Economy | +1.0 |
8 | Computational Transparency | +1.0 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0.0 |
VI. Summative Evaluation
Strengths
- Unified multiplicative structure (S01–S05) jointly models baseline ⟨dz/dt⟩, asymmetry A_drift, anisotropies {D1,D2}, environmental coupling, and instrument linkage, with interpretable parameters that inform frequency/time-base calibration, target selection, and LOS/environment stratification.
- Mechanism identifiability. Posterior significance in k_STG, theta_Coh, k_SC, mu_drift, psi_skel separates contributions from tensor geometry, coherence window, sea coupling & topology, and zero-point offsets.
- Operational utility. A_drift–D1–ρ(ε_drift,κ) phase maps plus systematics PCA optimize observing strategies and cross-platform calibration.
Blind Spots
- High-z with short baselines see increased σ_clk and LSF tails, inflating ε_drift uncertainties; longer baselines and more stable time references are needed.
- Line identification / absorber kinematics may mix with mu_drift; stronger line-profile/kinematics priors and independent validation samples are advised.
Falsification line & experimental suggestions
- Falsification. As specified in the front-matter falsification_line.
- Experiments.
- Baseline extension: lengthen core baselines to ≥15 yr, targeting ε_drift_rms ≤ 0.3×10^-10 yr^-1.
- Sky stratification: sample by κ and skeleton alignment to test the stability of D1.
- Time-base co-chaining: atomic-clock → optical comb → radio standard linkage to reduce ρ(ε_drift, Drift_inst).
- Multi-line ring calibration: cross-anchor Lyα, metal lines, and 21 cm to peel off absorber-kinematics mixing.
External References
- Sandage, A.; Loeb, A. The redshift-drift test of cosmic expansion.
- Liske, J., et al. Forecasts for dz/dt with ELT/HIRES.
- Darling, J. 21 cm absorption and cosmic acceleration.
- Milaković, D., et al. Clock-based wavelength calibration.
- Planck Collaboration. Lensing κ and LSS context.
Appendix A | Data Dictionary & Processing Details (Selected)
- Index dictionary. ⟨dz/dt⟩, ε_drift, A_drift, {D1,D2}, ρ(ε_drift, κ | env), ρ(ε_drift, Drift_inst), σ_clk, KS_p; units: yr^-1 and 10^-10 yr^-1.
- Processing details.
- Time-base unification via comb/cavity/atomic clocks with uncertainty propagation (errors-in-variables + total-least-squares).
- Multi-component LSF modeling and centroid-drift correction.
- Anisotropy via spherical harmonics (ℓ=1,2) and hemispherical splits with Monte-Carlo sky rotations.
- Hierarchical posteriors shared across survey/instrument/redshift/systematics layers; convergence by Gelman–Rubin and IAT.
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one instrument / redshift layer. Parameter drifts < 13%; RMSE variation < 9%.
- Systematics stress test. +5% LSF-tail and T/P drift → k_TBN and mu_drift rise; total parameter drift < 12%.
- Prior sensitivity. With k_STG ~ N(0,0.05²) and mu_drift ~ U(-1,1), posterior-mean shifts < 9%; evidence change ΔlogZ ≈ 0.5.
- Cross-validation. k=5 CV error 0.040; added high-z blind sets retain ΔRMSE ≈ −11%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/