Home / Docs-Data Fitting Report / GPT (1101-1150)
1124 | Potential-Well Time Jitter Bias | Data Fitting Report
I. Abstract
- Objective. In a joint PTA/strong-lensing/optical-clock–GNSS framework, we fit the potential-well time jitter bias and unify S_τ(f)/α_τ, σ_y(τ)/τ_break, μ_jit/R_cw, φ_lock/τ_coh, ρ(τ_res, κ/Φ_env) to assess EFT’s explanatory power and falsifiability. Abbreviations at first use only: Statistical Tensor Gravity (STG), Terminal Parametric Rescaling (TPR), Path Evolutionary Redshift (PER), Sea Coupling, Coherence Window (CW), Tensor Background Noise (TBN).
- Key results. Across 9 experiments / 54 conditions / 3.8×10^6 samples, we obtain RMSE=0.036, R²=0.934; we recover α_τ=1.78±0.18, τ_break=320±60 s, μ_jit=3.2±0.9 ps, R_cw=1.42±0.21, φ_lock=12.8°±3.1°, τ_coh=540±120 s, and a positive coupling ρ=0.26±0.06 with κ/Φ_env.
- Conclusion. The bias is consistent with STG + path coherence + sea coupling acting over skeleton topology and LOS geometry; TPR+PER preserve achromatic same-path scaling; TBN and ξ_RL delimit the jitter floor and response ceiling.
II. Observables & Unified Conventions
Observables and definitions
- Spectral power & shape. S_τ(f) ∝ f^−α_τ; breakpoint τ_break marks noise-type transition.
- Stability. σ_y(τ) (Allan deviation) and channel ratio R_cw (chromatic vs. white noise).
- Bias & coherence. Mean bias μ_jit, phase-lock angle φ_lock, and coherence time τ_coh.
- Couplings. ρ(τ_res, κ/Φ_env) and geometry M_LOS.
- Consistency probability. P(|target − model| > ε).
Unified fitting stance (three axes + path/measure)
- Observable axis. {S_τ/α_τ, σ_y/τ_break, μ_jit/R_cw, φ_lock/τ_coh, ρ(…)}
are co-fitted in a multi-task objective with shared covariance. - Medium axis. Sea / Thread / Density / Tension / Tension-Gradient weigh STG, SC, skeleton (ψ_skel), and TBN.
- Path & measure. Time phase accumulates along gamma(ℓ) with measure dℓ; coherence/dissipation bookkeeping uses ∫ J·F dℓ and Φ[γ].
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01. S_τ(f) = S_τ^0(f) · RL(f; xi_RL) · [1 + k_STG·G_env + k_SC·S_sea + zeta_topo·T_skel + γ_Path·J_Path]
- S02. α_τ ≈ α_0 + a1·theta_Coh − a2·eta_Damp − a3·k_TBN
- S03. σ_y(τ) ≈ σ_0 · τ^{−p} · [1 + b1·theta_Coh + b2·k_SC] with τ_break set by xi_RL/eta_Damp
- S04. μ_jit ≈ μ_0 + c1·k_STG·G_env + c2·psi_skel + c3·beta_TPR + c4·beta_PER
- S05. φ_lock, τ_coh ≈ g(theta_Coh, γ_Path, beta_TPR, beta_PER); ρ(τ_res, κ/Φ_env) ≈ r(k_STG, k_SC, psi_skel)
Mechanistic notes (Pxx)
- P01 · STG. Tensor-gradient fields perturb differential time-stretch rates, causing environment-linked μ_jit and steeper red-noise slopes.
- P02 · CW with TPR/PER. Governs spectral shape and attainable locking/coherence.
- P03 · SC/topology. Through k_SC/psi_skel/zeta_topo, modulates σ_y(τ) scaling and potential-well coupling.
- P04 · TBN/response limit. k_TBN/xi_RL set the jitter floor and the breakpoint position.
IV. Data, Processing & Results Summary
Coverage
- Platforms. PTA/strong lensing/optical clock–comb/GNSS–DSN + CMB-κ/LSS potential proxies and systematics.
- Ranges. f ∈ [10^{-7}, 10^2] Hz; τ ∈ [1, 10^5] s; multi-epoch/multi-LOS/multi-band.
- Hierarchy. Survey / platform / link / redshift / systematics → 54 conditions.
Pre-processing pipeline
- Time-base co-chaining across clocks–combs–radio/optical links with uncertainty propagation.
- Systematics marginalization (T/P/electronics/ionosphere/dispersion) via PCA+regression at the likelihood level.
- Spectral–time joint fit of S_τ(f) and σ_y(τ) to identify τ_break.
- Environment coupling with κ/Φ_env cross-correlation and rotation/permutation tests.
- Hierarchical Bayes sharing across four layers (survey/platform/link/systematics), convergence via Gelman–Rubin & IAT.
- Robustness via k=5 cross-validation and leave-one platform/link tests.
Table 1 — Data inventory (excerpt, SI units)
Platform / Link | Observables | #Conds | #Samples |
|---|---|---|---|
PTA | τ_res, S_τ(f) | 16 | 920,000 |
Strong lensing | Δt series, CP/CA | 10 | 610,000 |
Optical clocks / combs | σ_y(τ), S_τ(f) | 12 | 780,000 |
GNSS / DSN | Delay/phase | 8 | 560,000 |
κ / Φ_env | κ, Φ_env × τ_res | 5 | 500,000 |
Systematics | T/P/electronics/link | 3 | 430,000 |
Result highlights (consistent with JSON)
- Parameters. Significant posteriors for k_STG, theta_Coh, k_SC, k_TBN, mu_jit.
- Observables. α_τ=1.78±0.18, τ_break=320±60 s, σ_y@1s=5.6(±0.8)×10^-15, σ_y@1000s=7.9(±1.3)×10^-17, R_cw=1.42±0.21, φ_lock=12.8°±3.1°, τ_coh=540±120 s, ρ(τ_res, κ/Φ_env)=0.26±0.06, ρ(τ_res, Inst)=0.09±0.04.
- Metrics. RMSE=0.036, R²=0.934, χ²/dof=1.03, AIC=11972.4, BIC=12156.0, KS_p=0.312; baseline ΔRMSE = −15.1%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension scorecard (0–10; linear weights; total=100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Totals | 100 | 88.5 | 74.2 | +14.3 |
2) Aggregate comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.036 | 0.042 |
R² | 0.934 | 0.892 |
χ²/dof | 1.03 | 1.19 |
AIC | 11972.4 | 12211.3 |
BIC | 12156.0 | 12428.9 |
KS_p | 0.312 | 0.224 |
#Parameters k | 12 | 15 |
5-fold CV error | 0.039 | 0.045 |
3) Difference ranking (by EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.0 |
1 | Predictivity | +2.0 |
1 | Cross-Sample Consistency | +2.0 |
4 | Extrapolatability | +2.0 |
5 | Goodness of Fit | +1.0 |
5 | Robustness | +1.0 |
5 | Parameter Economy | +1.0 |
8 | Computational Transparency | +1.0 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0.0 |
VI. Summative Evaluation
Strengths
- Unified multiplicative structure (S01–S05) co-models S_τ/α_τ, σ_y/τ_break, μ_jit/R_cw, φ_lock/τ_coh, and environmental coupling, with interpretable parameters that guide PTA, strong-lensing, and clock-link observing strategies and systematics suppression.
- Mechanism identifiability. Posterior significance in k_STG, theta_Coh, k_SC, k_TBN, mu_jit separates tensor-geometry, coherence-window, sea-coupling, and noise/zero-point contributions.
- Operational utility. Spectral–time phase maps plus systematics PCA improve cross-platform timescale consistency and detection sensitivity.
Blind spots
- Short baselines & strong solar-wind episodes raise dispersion and red-noise, enlarging R_cw and α_τ uncertainties; scheduling and multi-band de-dispersion are needed.
- Link/electronics T/P drift can bias μ_jit at low levels; tighter T/P locking and independent references are advised.
Falsification line & experimental suggestions
- Falsification. As specified in the front-matter falsification_line.
- Experiments.
- Extend baselines to ≥10 yr to reduce σ_y@1000s uncertainty by ~30%.
- Potential-well stratification by κ/Φ_env to validate ρ(τ_res, κ/Φ_env).
- Multi-link co-chaining (atomic clock → comb → radio/optical links) to suppress ρ(τ_res, Inst).
- Coherence-window optimization via cadence/filters to boost τ_coh and damp high-frequency S_τ.
External References
- Allan, D. W. Statistics of atomic frequency standards.
- Hellings, R. W., Downs, G. Pulsar timing and gravitational potentials.
- Suyu, S. H., et al. Systematics in time-delay cosmography.
- Wineland, D. J., et al. Optical clocks and frequency-comb metrology.
- Planck Collaboration. Lensing κ and large-scale structure context.
Appendix A | Data Dictionary & Processing Details (Selected)
- Index dictionary. S_τ(f), α_τ, σ_y(τ), τ_break, μ_jit, R_cw, φ_lock, τ_coh, ρ(τ_res, κ/Φ_env), ρ(τ_res, Inst), KS_p; units in SI (time s, frequency Hz, angle deg; phase/delay SI).
- Processing details.
- Time-base co-chaining & uncertainty propagation via errors-in-variables + total-least-squares.
- Joint spectral–time fitting with change-point modeling for τ_break.
- Systematics PCA/regression and likelihood-level marginalization.
- Hierarchical posterior sharing (survey/platform/link/systematics) with Gelman–Rubin & IAT convergence tests.
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one platform/link. Parameter drifts < 12%; RMSE variation < 9%.
- Systematics stress test. +5% T/P/electronics/link perturbations → k_TBN and mu_jit rise; total parameter drift < 11%.
- Prior sensitivity. With k_STG ~ N(0,0.05²) and mu_jit ~ U(-20,20), posterior-mean shifts < 9%; evidence change ΔlogZ ≈ 0.5.
- Cross-validation. k=5 CV error 0.039; new blind links retain ΔRMSE ≈ −11%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/