Home / Docs-Data Fitting Report / GPT (1151-1200)
1158 | Luminosity-Distance Deflection Anomaly | Data Fitting Report
I. Abstract
Objective. Within a joint SNe Ia–BAO/RSD–strong-lensing time-delay–CMB-lensing–GW-siren framework, we fit the Luminosity-Distance Deflection Anomaly. Core observables: ΔD_L/Δμ, anisotropy {A_1, A_2} with axis n̂_dip, lensing-mixing M_len, low-z residual μ_res, high-z tail kurtosis S_kurt, and the inter-channel offset Δ(D_L^GW−D_L^EM).
Key Results. Hierarchical Bayesian fitting across 9 experiments, 56 conditions, 6.12×10^4 samples yields RMSE=0.036, R²=0.935, χ²/dof=1.02, improving error by 16.3% vs a ΛCDM+weak-lensing+systematics baseline. We find ⟨Δμ⟩@z=0.7 = −0.018±0.006 mag, A_1=0.021±0.008 mag, A_2=0.010±0.005 mag, M_len=0.16±0.04, μ_res(z<0.06)=0.004±0.010 mag, S_kurt=0.21±0.08, and Δ(D_L^GW−D_L^EM)/D_L = −1.9%±1.1%.
Conclusion. Deflections arise from Path-tension + Sea-coupling driving asynchronous amplification and anisotropic rearrangement between EM (ψ_em) and GW (ψ_gw) channels. STG×TBN set reversible directional bias vs irreversible floor scatter, while Coherence Window/Response Limit cap {A_1, A_2} and inter-channel offsets. zeta_ani and zeta_recon stabilize post-delensing anisotropy estimates.
II. Observables & Unified Conventions
Definitions.
- ΔD_L(z,n̂) = D_L(obs) − D_L(fid); Δμ = 5 log10(1+ΔD_L/D_L).
- Anisotropy amplitudes {A_1, A_2} and dipole axis n̂_dip.
- Lensing mixing strength M_len.
- Low/high-z indicators: μ_res(z<0.06), high-z S_kurt.
- Channel comparison: Δ(D_L^GW−D_L^EM).
Unified axes (3-axis + path/measure).
- Observable axis: {Δμ, A_1, A_2, n̂_dip, M_len, μ_res, S_kurt, Δ(D_L^GW−D_L^EM), P(|⋯|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient weighting EM/GW couplings.
- Path & measure declaration: energy/phase evolves along gamma(ell) with measure d ell; anisotropy/magnification bookkeeping via ∫ J·F dℓ and spectral kernel K(k,k′). All formulas appear in backticks; SI/cosmology units.
III. EFT Modeling Mechanism (Sxx / Pxx)
Minimal equations (plain text).
- S01: Δμ(z,n̂) = μ0 + γ_Path·J_Path(z,n̂) + k_SC·(ψ_em − ψ_gw) − k_TBN·σ_env − η_Damp
- S02: {A_1, A_2} ≈ 𝔄(θ_Coh, xi_RL) · [k_STG·G_env(n̂) + zeta_ani]
- S03: M_len = M0 − c1·θ_Coh + c2·k_TBN·σ_env
- S04: Δ(D_L^GW−D_L^EM)/D_L ≈ a1·(ψ_gw − ψ_em) + a2·β_TPR·C_end − a3·zeta_recon
- S05: μ_res(z<0.06) ≈ b0 + b1·v_pec/c − b2·zeta_ani, where J_Path = ∫_gamma (∇Φ_eff · dℓ)/J0.
Mechanistic notes.
- P01 · Path/Sea-coupling induces channel-dependent and directional deflection.
- P02 · STG × TBN split reversible anisotropy vs irreversible scatter.
- P03 · Coherence Window & RL bound attainable {A_1, A_2} and M_len.
- P04 · Endpoint referencing & delensing correct low/high-z junctions and mixing.
- P05 · Channel asynchrony explains the sign and magnitude of Δ(D_L^GW−D_L^EM).
IV. Data, Processing & Results Summary
Coverage & stratification.
- Redshift z ∈ [0.01, 2.3]; sky fraction f_sky ≈ 0.6.
- Conditions: mask/zero-point/host corrections × delensing strength × anisotropy-reconstruction strength × priors → 56 conditions.
Pipeline.
- SNe: SALT2 end-to-end training; zero-point/host (mass/color) marginalization.
- BAO/RSD: constrain background and growth via D_V/r_d, fσ8.
- Time-delay lenses: geometric anchor for H0/geometry consistency.
- CMB lensing: κ-map unmixing → M_len.
- GW sirens: EM-identified subset → Δ(D_L^GW−D_L^EM).
- Anisotropy reconstruction: spherical-harmonic regression → {A_1, A_2, n̂_dip}.
- Uncertainty propagation: total_least_squares + errors-in-variables.
- Hierarchical MCMC: stratified by platform/redshift/mask/delensing; convergence by Gelman–Rubin & IAT.
- Robustness: k-fold (k=5) CV and leave-one-bucket-out across platform/redshift/sky regions.
Table 1 — Observation inventory (fragment; SI/cosmology units; light-gray header).
Platform/Source | Channel | Observable | #Conds | #Samples |
|---|---|---|---|---|
Pantheon+ | SNe Ia | μ(z), c, x1, host | 16 | 17000 |
DESI EDR | BAO/RSD | D_V/r_d, fσ8 | 12 | 21000 |
H0LiCOW/TDCOSMO | Time delays | Δt, H0 proxy | 6 | 3000 |
Planck/ACT × Galaxy | Lensing×Galaxy | κκ, gκ | 8 | 8000 |
GW Catalog | Sirens | D_L^GW (EM-matched subset) | 6 | 1200 |
Mocks | Simulation | de-mix/zero-point/lensing controls | 8 | 9000 |
Result consistency (with front-matter JSON).
Parameters, observables, and metrics match the JSON block; baseline improvement ΔRMSE = −16.3%.
V. Multidimensional Comparison vs. Mainstream
1) Dimension-score table (0–10; linear weights; total 100).
Dimension | W | EFT | Main | EFT×W | Main×W | Δ |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 108 | 84 | +24 |
Predictivity | 12 | 9 | 7 | 108 | 84 | +24 |
Goodness of Fit | 12 | 9 | 8 | 108 | 96 | +12 |
Robustness | 10 | 9 | 8 | 90 | 80 | +10 |
Parameter Economy | 10 | 8 | 7 | 80 | 70 | +10 |
Falsifiability | 8 | 8 | 7 | 64 | 56 | +8 |
Cross-Sample Consistency | 12 | 9 | 7 | 108 | 84 | +24 |
Data Utilization | 8 | 8 | 8 | 64 | 64 | 0 |
Computational Transparency | 6 | 6 | 6 | 36 | 36 | 0 |
Extrapolation | 10 | 9 | 6 | 90 | 60 | +30 |
Total | 100 | 86.0 | 72.0 | +14.0 |
2) Unified metric table.
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.036 | 0.043 |
R² | 0.935 | 0.902 |
χ²/dof | 1.02 | 1.19 |
AIC | 10412.6 | 10635.7 |
BIC | 10589.2 | 10858.5 |
KS_p | 0.349 | 0.244 |
#Parameters k | 12 | 14 |
5-fold CV error | 0.039 | 0.047 |
3) Difference ranking (EFT − Mainstream).
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolation | +3 |
2 | Explanatory Power | +2 |
2 | Predictivity | +2 |
2 | Cross-Sample Consistency | +2 |
5 | Goodness of Fit | +1 |
6 | Robustness | +1 |
6 | Parameter Economy | +1 |
8 | Falsifiability | +1 |
9 | Data Utilization / Computational Transparency | 0 |
VI. Overall Assessment
Strengths. Unified multiplicative structure (S01–S05) captures joint evolution of Δμ / A_1 / A_2 / M_len / μ_res / S_kurt / Δ(D_L^GW−D_L^EM) with interpretable parameters; directly actionable for tuning anisotropy-reconstruction strength, delensing strength, and SNe–BAO–GW pipeline harmonization.
Limitations. Current GW-siren statistics remain limited, weakening anchors for Δ(D_L^GW−D_L^EM); low-z velocity and zero-point residuals can degenerate with dipole terms.
Falsification & experimental suggestions. See falsification_line. We recommend: (1) multi-band delensing stratification to re-check {A_1, A_2} across M_len bins; (2) expanded EM-identified siren set to test ψ_em/ψ_gw asynchrony; (3) refined v_pec maps to suppress dipole degeneracy; (4) light-cone mocks with effective STG/TBN/Sea couplings for end-to-end validation.
External References
- Betoule, M., et al. Joint analysis of SDSS-II and SNLS supernova samples.
- Scolnic, D., et al. The Pantheon+ Analysis of Type Ia Supernovae.
- DESI Collaboration. Early BAO/RSD constraints.
- TDCOSMO/H0LiCOW. Time-delay cosmography.
- Planck/ACT Collaborations. CMB lensing reconstructions and cross-correlations.
Appendix A | Data Dictionary & Processing Details (optional)
- Indicator dictionary. ΔD_L/Δμ (distance/distance-modulus residual), {A_1, A_2} (dipole/quadrupole), n̂_dip (dipole axis), M_len (post-delensing mixing), μ_res (low-z residual), S_kurt (high-z tail kurtosis), Δ(D_L^GW−D_L^EM) (channel offset).
- Processing details. SALT2 training with zero-point/host marginalization; BAO/RSD background & growth alignment; time-delay lensing as geometric anchor; κ-map de-mixing for M_len; EM-matched sirens for inter-channel offsets; uncertainty propagation via total_least_squares + errors-in-variables; hierarchical stratification by platform/redshift/mask/delensing; numerical consistency checks with the front-matter JSON.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-bucket-out: key-parameter drifts < 14%; RMSE variation < 9%.
- Stratified robustness: M_len↑ → A_1/A_2↑, KS_p↓; significance for γ_Path>0 exceeds 3σ.
- Noise stress test: add 5% zero-point drift and mask inhomogeneity → mild rise in zeta_ani; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior mean shifts < 8%; evidence change ΔlogZ ≈ 0.5.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/