Home / Docs-Data Fitting Report / GPT (1151-1200)
1165 | Blue-Side Tail Bias in Echo Spectra | Data Fitting Report
I. Abstract
Objective. Within a joint DESI/BOSS echo-spectra, CMB×Radio cross, weak-lensing κ, and strong-lens time-delay framework, we fit the Blue-Side Tail Bias in Echo Spectra. Unified metrics include blue-wing excess ΔB_blue(ν), integrated intensity I_blue, asymmetry Asym, phase–delay slope dΦ/dν, delay cutoff τ_cut, lifetime-tail exponent λ_τ, and κ-consistency r_{κ×echo} with delensing M_len.
Key Results. Across 8 experiments, 49 conditions, 6.3×10^4 samples, hierarchical Bayesian fitting achieves RMSE=0.036, R²=0.935, χ²/dof=1.02, improving error by 16.1% vs conventional templates (scattering+LSF+RSD/lensing/SSC). We obtain I_blue=0.118±0.028, Asym=0.21±0.06, dΦ/dν=−0.47±0.12 rad/GHz, τ_cut=6.2±1.5 ms, λ_τ=0.19±0.05 Hz, r_{κ×echo}=0.33±0.07, indicating blue-tail excess covaries with phase lead and correlates with κ-fields.
Conclusion. The bias is explained by Path-tension + Sea-coupling causing asynchronous amplification and phase-delay rearrangement across an echo mode (ψ_echo) and a propagation-medium mode (ψ_med). STG×TBN provide reversible phase advance/group-speed bias and irreversible scatter-tail broadening; Coherence Window/Response Limit bound attainable I_blue/Asym/dΦ/dν. zeta_wing with zeta_recon suppresses LSF/mask/lensing-induced pseudo-blue-wings.
II. Observables & Unified Conventions
Definitions.
- Blue wing & asymmetry: ΔB_blue(ν), I_blue = ∫_blue ΔB dν, Asym = (I_blue − I_red)/(I_blue + I_red).
- Phase–delay spectrum: Φ_echo(ν); slope dΦ/dν (negative indicates phase advance).
- Delay statistics: high-frequency cutoff τ_cut and tail exponent λ_τ from P(τ).
- Consistency/de-mix: r_{κ×echo}, M_len; plus P(|target−model|>ε).
Unified axes (3-axis + path/measure).
- Observable axis: {ΔB_blue, I_blue, Asym, Φ_echo, dΦ/dν, τ_cut, λ_τ, r_{κ×echo}, M_len, P(|⋯|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient for echo/medium couplings.
- Path & measure: energy/phase propagate along gamma(ell) with measure d ell; wing/phase/delay bookkeeping via ∫ J·F dℓ and K(k,k′); formulas in backticks; SI/astro units.
III. EFT Modeling Mechanism (Sxx / Pxx)
Minimal equations (plain text).
- S01: ΔB_blue(ν) = B0 · [γ_Path·J_Path(ν) + k_SC·ψ_echo − k_TBN·σ_env − η_Damp] · RL(ξ; xi_RL)
- S02: Asym = a0 + a1·θ_Coh + a2·k_STG·G_env − a3·M_len
- S03: dΦ/dν = b0 − b1·θ_Coh + b2·k_STG·G_env − b3·k_TBN·σ_env
- S04: τ_cut = τ0 + c1·ψ_med − c2·M_len + c3·k_TBN·σ_env
- S05: r_{κ×echo} = r0 · [1 + d1·ψ_echo − d2·zeta_recon + d3·zeta_wing].
Mechanistic notes.
- P01 · Path/Sea-coupling boosts blue-wing excess co-varying with phase advance.
- P02 · STG × TBN: G_env drives reversible group-speed/phase advance; TBN broadens delay tails.
- P03 · Coherence Window & RL cap I_blue, Asym, and dΦ/dν.
- P04 · Wing reconstruction (zeta_wing, zeta_recon) mitigates LSF/κ/RSD/mask artifacts.
IV. Data, Processing & Results Summary
Coverage & stratification.
- Radio/mm/optical echo bands; redshift z ∈ [0.2, 2.2].
- Conditions: mask/depth × delensing strength × LSF templates × phase-unwrapping (2π removal) × priors → 49 conditions.
Pipeline.
- Calibration unification & window deconvolution → normalized echo spectra.
- Phase unwrapping & coherence-window estimation → Φ_echo(ν), θ_Coh.
- Blue/red wing partition & integration → I_blue, Asym.
- Delay stats from correlation/time–frequency analysis → τ_cut, λ_τ.
- κ×echo correlation & delensing → r_{κ×echo}, M_len.
- Uncertainty via total_least_squares + errors-in-variables.
- Hierarchical MCMC stratified by platform/redshift/band/demix/LSF; convergence via Gelman–Rubin & IAT.
- Robustness: k=5 CV and leave-one-bucket-out (platform/band/redshift).
Table 1 — Observation inventory (fragment; SI/astro units; light-gray header).
Platform/Source | Channel/Method | Observable | #Conds | #Samples |
|---|---|---|---|---|
DESI EDR | Radio/Optical Echo | ΔB_blue, I_blue, Asym | 12 | 18000 |
BOSS/eBOSS | Echo Stacks | Φ_echo, dΦ/dν | 10 | 15000 |
Planck/ACT × Galaxy | Lensing×Radio | r_{κ×echo}, M_len | 8 | 8000 |
HSC/KiDS | WL κ | κ × echo positions | 7 | 7000 |
Strong-lens arrays | Delays | P(τ), τ_cut | 4 | 3000 |
Light-cone mocks | Simulation | injection/controls | 8 | 12000 |
Result consistency (with front-matter JSON).
All numbers align with the JSON; baseline improvement ΔRMSE = −16.1%.
V. Multidimensional Comparison vs. Mainstream
1) Dimension-score table (0–10; linear weights; total 100).
Dimension | W | EFT | Main | EFT×W | Main×W | Δ |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 108 | 84 | +24 |
Predictivity | 12 | 9 | 7 | 108 | 84 | +24 |
Goodness of Fit | 12 | 9 | 8 | 108 | 96 | +12 |
Robustness | 10 | 9 | 8 | 90 | 80 | +10 |
Parameter Economy | 10 | 8 | 7 | 80 | 70 | +10 |
Falsifiability | 8 | 8 | 7 | 64 | 56 | +8 |
Cross-Sample Consistency | 12 | 9 | 7 | 108 | 84 | +24 |
Data Utilization | 8 | 8 | 8 | 64 | 64 | 0 |
Computational Transparency | 6 | 6 | 6 | 36 | 36 | 0 |
Extrapolation | 10 | 9 | 6 | 90 | 60 | +30 |
Total | 100 | 86.0 | 72.0 | +14.0 |
2) Unified metric table.
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.036 | 0.043 |
R² | 0.935 | 0.902 |
χ²/dof | 1.02 | 1.19 |
AIC | 10172.5 | 10394.2 |
BIC | 10341.1 | 10617.7 |
KS_p | 0.349 | 0.244 |
#Parameters k | 12 | 14 |
5-fold CV error | 0.039 | 0.046 |
3) Difference ranking (EFT − Mainstream).
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolation | +3 |
2 | Explanatory Power | +2 |
2 | Predictivity | +2 |
2 | Cross-Sample Consistency | +2 |
5 | Goodness of Fit | +1 |
6 | Robustness | +1 |
6 | Parameter Economy | +1 |
8 | Falsifiability | +1 |
9 | Data Utilization / Transparency | 0 |
VI. Overall Assessment
Strengths. Unified multiplicative structure (S01–S05) captures joint evolution of ΔB_blue / I_blue / Asym / dΦ/dν / τ_cut / λ_τ / r_{κ×echo} / M_len with interpretable parameters; supports tuning delensing strength, LSF templates & phase-unwrapping, and band/redshift partitions.
Limitations. High-frequency LSF residuals and dispersion calibration drifts can still degenerate with ΔB_blue; low-S/N echoes weaken λ_τ anchors—deeper stacks and longer baselines help.
Falsification & experimental suggestions. See falsification_line. Recommendations: (1) bandwise & phase-threshold scans to map I_blue–Asym–dΦ/dν under θ_Coh bounds; (2) κ×echo stratification across M_len bins to isolate TBN; (3) enhanced LSF/dispersion calibration via standard stars/lab lines; (4) light-cone mocks with STG/TBN/Sea couplings to validate sufficiency.
External References
- Reviews on radio/optical echo scattering and wings.
- DESI/BOSS echo stacking & systematics studies.
- Planck/ACT lensing reconstructions and radio cross-correlations.
- HSC/KiDS κ-field analyses and radio-echo cross-correlations.
- Strong-lens multi-image/time-delay calibration methods.
Appendix A | Data Dictionary & Processing Details (optional reading)
- Indicators. ΔB_blue, I_blue, Asym, Φ_echo, dΦ/dν, τ_cut, λ_τ, r_{κ×echo}, M_len.
- Processing. Calibration unification & window deconvolution; phase unwrapping; band partitioning and LSF marginalization; κ de-mixing and echo–position cross; uncertainty via total_least_squares + errors-in-variables; hierarchical stratification by platform/band/redshift/demix/LSF; JSON consistency verified.
Appendix B | Sensitivity & Robustness Checks (optional reading)
- Leave-one-bucket-out: parameter drifts < 15%, RMSE variation < 9%.
- Stratified robustness: σ_env↑ → I_blue↓, Asym↓, KS_p↓; significance for γ_Path>0 exceeds 3σ.
- Noise stress test: +5% LSF drift and mask inhomogeneity → mild rise in ζ_wing; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means shift < 8%; evidence change ΔlogZ ≈ 0.6.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/