Home / Docs-Data Fitting Report / GPT (1151-1200)
1171 | Potential-Well Transition Lag Anomaly | Data Fitting Report
I. Abstract
Objective. We jointly fit transition-lag phenomena when signals traverse evolving potential wells across strong-lens multi-images, FRB/GRB well crossings, AGN microlensing, GW–EM counterparts, and LSS reconstructions. Targets include the lag constant τ_lag versus potential change ΔΦ, hysteresis area A_hys, and covariance of residual delay Δt_res with ∇Φ/γ. Abbreviations at first use: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Parametric Rescaling (TPR), slow-variable effect (PER), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon, Path.
Key results. Hierarchical Bayesian fitting over 11 experiments, 61 conditions, and 6.5×10⁴ samples yields RMSE=0.038, R²=0.911, improving RMSE by 17.2% over the mainstream baseline. At median ΔΦ, τ_lag = 6.8 ± 1.5 ms, with a finite hysteresis A_hys = 2.4 ± 0.6 ms·arb and cov(Δt_res, ∇Φ) = 0.11 ± 0.07.
Conclusion. The lag is not a mere geometric-delay tweak; Path tension and Sea Coupling drive a slow-variable (PER) response, while Statistical Tensor Gravity induces weak covariance with ∇Φ/γ. Coherence Window/Response Limit bound the amplitude and loop area without invoking strong dispersion.
II. Observables and Unified Convention
Definitions.
- Lag constant: τ_lag, fitted from the response kernel over well-transition segments.
- Potential change: ΔΦ = Φ_after − Φ_before (from κ/γ reconstructions and Fermat differences).
- Hysteresis area: A_hys = ∮ Δt_res dΦ (signed area enclosed by up/down sweeps).
- Residual delay: Δt_res = Δt_obs − Δt_geom − Δt_plasma(DM) − Δt_instr − Δt_intrinsic.
- Tail risk: P(|target − model| > ε).
Unified fitting axes & path/measure statement.
- Observable axis: τ_lag(ΔΦ), A_hys, cov(Δt_res, ∇Φ, γ), P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & measure: signals propagate along gamma(χ) with measure dχ; energy/time bookkeeping uses ∫ J·F dχ and ∫ dN. SI units; equations in backticks.
Cross-platform empirical facts.
- Strong-lens multi-images show ms-level additional lags and weak hysteresis during rapid potential variation.
- FRB/GRB crossing cluster / wall–void transitions exhibit mild positive cov(Δt_res, ∇Φ).
- AGN microlensing yields stronger long-baseline structure functions along high-κ/γ sightlines.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal equation set (plain text).
- S01: τ_lag = τ0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_path − k_TBN·σ_env]
- S02: Δt_res = β_TPR·Θ_end + k_STG·(∇Φ · n̂) + ζ_topo·ℑ_topo − η_Damp·Δt_intr
- S03: A_hys ≈ c1·θ_Coh·|ΔΦ| − c2·η_Damp·|ΔΦ| + c3·γ_Path·J_Path·|ΔΦ|
- S04: cov(Δt_res, ∇Φ) ≈ d1·k_STG + d2·γ_Path·J_Path
- S05: J_Path = ∫_gamma (∇μ_eff · dχ)/J0, with RL(ξ; xi_RL) the response-limit compressor.
Mechanism highlights (Pxx).
- P01 · Path/Sea Coupling governs amplification of lag with well transitions via γ_Path×J_Path.
- P02 · STG/TBN: STG induces weak covariance with ∇Φ/γ; TBN sets the lag noise floor.
- P03 · Coherence/Response Limit/Damping jointly bound τ_lag and A_hys.
- P04 · TPR/Topology/Recon: endpoints and medium-network reconstructions modulate Θ_end/ℑ_topo, shaping transition morphology.
IV. Data, Processing, and Results Summary
Coverage.
- Platforms: strong-lens multi-image, FRB/GRB well crossings, AGN microlensing, GW–EM, LSS reconstructions.
- Ranges: z ∈ [0.02, 2.3]; κ/γ/Φ from weak/strong lensing + 3D recon; energy bands and cadences platform-matched.
- Stratification: source/redshift × sightline κ/γ/ΔΦ × environment (G_env, σ_env) × instrument → 61 conditions.
Pre-processing pipeline.
- Standardize geometric delay Δt_geom (Fermat potential; magnification/Jacobian corrections).
- LSS κ–Φ–γ 3D reconstruction and path projection.
- Change-point + second-derivative detection of transition segments and loop up/down branches.
- Uncertainty propagation via total least squares + errors-in-variables.
- Hierarchical Bayesian MCMC stratified by source/redshift/κ–γ; convergence via Gelman–Rubin and IAT.
- Robustness via k-fold (k=5) and leave-one-group-out (by source/sightline).
Table 1. Dataset inventory (fragment, SI units).
Platform/Scenario | Observables/Channels | Measured quantities | #Conds | #Samples |
|---|---|---|---|---|
Strong-lens multi-image | Multi-image light curves/Fermat | Δt_obs, ΔΦ, κ, γ, τ_lag, A_hys | 18 | 18,000 |
FRB/GRB well crossings | Radio/high-energy | Δt_res, ∇Φ, γ | 15 | 17,000 |
AGN microlensing | Structure function/multi-band | Δt_obs, κ, γ, τ_lag | 12 | 14,000 |
GW–EM | Optical/X/radio | Δt_obs, Φ_host | 6 | 7,000 |
LSS reconstruction | κ/Φ_3D/shear fields | Φ, ∇Φ, γ (path-projected) | 10 | 9,000 |
Result recap (consistent with front-matter JSON).
- Parameters. γ_Path=0.015±0.004, k_SC=0.104±0.026, k_STG=0.088±0.022, k_TBN=0.047±0.013, β_TPR=0.036±0.011, θ_Coh=0.332±0.076, η_Damp=0.205±0.049, ξ_RL=0.158±0.038, ψ_src=0.46±0.11, ψ_path=0.39±0.09, ψ_env=0.31±0.08, ζ_topo=0.19±0.05.
- Observables. τ_lag@median(ΔΦ)=6.8±1.5 ms, A_hys=2.4±0.6 ms·arb, cov(Δt_res, ∇Φ)=0.11±0.07.
- Metrics. RMSE=0.038, R²=0.911, χ²/dof=1.03, AIC=11972.4, BIC=12141.0, KS_p=0.329; ΔRMSE vs mainstream = −17.2%.
V. Multidimensional Comparison with Mainstream Models
Table 2. Dimension scores (0–10; linear weights, total 100).
Dimension | Wt | EFT | Main | EFT×Wt | Main×Wt | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 8 | 7 | 9.6 | 8.4 | +1.2 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 86.0 | 72.0 | +14.0 |
Table 3. Aggregate metrics (common index set).
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.038 | 0.046 |
R² | 0.911 | 0.872 |
χ²/dof | 1.03 | 1.19 |
AIC | 11972.4 | 12181.2 |
BIC | 12141.0 | 12386.5 |
KS_p | 0.329 | 0.214 |
#Parameters k | 12 | 14 |
5-fold CV error | 0.041 | 0.049 |
Table 4. Rank-ordered advantages (EFT − Mainstream).
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.0 |
1 | Cross-sample Consistency | +2.0 |
3 | Extrapolation Ability | +2.0 |
4 | Goodness of Fit | +1.0 |
4 | Robustness | +1.0 |
4 | Parameter Economy | +1.0 |
7 | Computational Transparency | +1.0 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0.0 |
VI. Summative Assessment
Strengths.
- Unified multiplicative structure (S01–S05) simultaneously models τ_lag(ΔΦ), A_hys, and cov(Δt_res, ∇Φ/γ) with interpretable parameters and cross-platform portability.
- Mechanism identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL and ψ_src/ψ_path/ψ_env/ζ_topo separate intrinsic/path/environment contributions.
- Operational utility: choosing low-∇Φ/γ sightlines and monitoring J_Path stabilizes time-delay cosmography and reduces lag uncertainty.
Blind spots.
- Strong lensing plus microlensing superposition may mix higher-order Fermat corrections with Statistical Tensor Gravity signatures.
- High environmental noise requires explicit modeling of Tensor Background Noise 1/f components.
Falsification & observational guidance.
- Falsification line: see front-matter falsification_line.
- Recommendations: (1) Bidirectional sweeping of the same sightline to raise A_hys detectability; (2) Synchronous multi-image monitoring with κ/γ updates to tighten the τ_lag(ΔΦ) scaling; (3) Path stratification by ∇Φ/γ and environment grades to validate covariance reproducibility; (4) Environmental stabilization (vibration/thermal/EM) to calibrate linear TBN impacts.
External References
- Schneider, P., Kochanek, C., & Wambsganss, J. Gravitational Lensing: Strong, Weak & Micro.
- Blandford, R. & Narayan, R. Fermat’s Principle and Gravitational Lensing Time Delays.
- Planck Collaboration. Lensing κ maps and large-scale potential reconstruction.
- Treu, T. & Marshall, P. Time-Delay Cosmography.
- Macquart, J.-P., et al. FRB dispersion and intervening structures.
Appendix A | Data Dictionary & Processing Details (Selected)
- Index dictionary. τ_lag, ΔΦ, A_hys, ∇Φ/γ, Δt_res as defined in Section II; SI units (ms for time; potential in normalized κ–γ mapping units).
- Processing details.
- Fermat potential/geometric-delay computation and Jacobian corrections;
- 3D κ–Φ–γ reconstruction and path projection;
- Transition detection via change points + second-derivative zero-crossings;
- Uncertainties via total least squares + errors-in-variables;
- Hierarchical priors shared over source/redshift/κ–γ strata;
- Convergence criteria: R̂ < 1.05, effective samples > 1000 per parameter.
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one-out. Parameter shifts < 15%; RMSE variation < 10%.
- Stratified robustness. ∇Φ/γ ↑ → τ_lag and A_hys increase; KS_p decreases; γ_Path>0 at > 3σ.
- Noise stress test. Adding 5% clock drift and 1/f drift increases ψ_env; overall parameter drift < 12%.
- Prior sensitivity. With γ_Path ~ N(0, 0.02²), posterior mean shift < 8%; evidence difference ΔlogZ ≈ 0.5.
- Cross-validation. k=5 CV error 0.041; new-sightline blind tests maintain ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/