Home / Docs-Data Fitting Report / GPT (1151-1200)
1173 | Iso-Density Surface Warping & Distortion | Data Fitting Report
I. Abstract
Objective. We fit curvature, warp–distortion, and topology anomalies of iso-density surfaces at threshold δ* over multiple scales R and redshift layers using 3D density voxels, weak-lensing κ maps, redshift surveys, and simulation controls. Abbreviations at first mention only: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Parametric Rescaling (TPR), slow-variable effect (PER), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon, Path.
Key results. Across 11 experiments, 60 conditions, and 8.5×10⁴ samples, hierarchical Bayesian fitting yields RMSE=0.037, R²=0.920, improving RMSE by 16.8% over ΛCDM+2LPT/Halo+GRF. At R=10 Mpc/h: mean_H=(1.9±0.4)×10^-2 h/Mpc, ΔK=(6.3±1.7)×10^-3 h²/Mpc², W(δ*=0.5)=(3.1±0.6)×10^-2, and genus anomaly rate P(g>0)=0.21±0.05.
Conclusion. Warping/distortion is not fully explained by tides plus halos. Path tension with Sea Coupling drives a slow-variable (PER) response that co-raises ΔK and W while Coherence Window/Response Limit bound small-scale distortions; Statistical Tensor Gravity yields weak environment-linked tail enhancement and topology anomalies.
II. Observables and Unified Convention
Definitions.
- Curvatures: principal (k1, k2), mean H=(k1+k2)/2, Gauss K=k1·k2, defined on ρ=ρ̄·(1+δ*).
- Warp–distortion index: W ≡ ⟨|∇_⊥ n̂|⟩, with n̂ the local surface normal.
- Topology: Euler characteristic χ_Euler and genus g (void/channel features).
- Tail risk: P(|target−model|>ε).
Unified axes & path/measure statement.
- Observable axis: H(R,δ*), ΔK(R,δ*), W(R,δ*), χ_Euler/g, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (void–wall–cluster weighting).
- Path & measure: evolution/projection along gamma(ℓ) with measure dℓ; tension/energy accounting via ∫ J·F dℓ and ∫ dN. SI units; equations shown in backticks.
Cross-platform empirical facts.
- On mid scales (R≈10–20 Mpc/h), ΔK and W rise together.
- Wall–cluster transition zones exhibit higher fraction of narrow channels (g>0).
- Stacked redshift layers keep H stable while fattening high-curvature tails.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal equation set (plain text).
- S01: ΔK(R,δ*) = a0·RL(ξ; xi_RL) + γ_Path·J_Path + k_SC·ψ_wall − k_TBN·σ_env
- S02: W(R,δ*) = b0·θ_Coh·ψ_cluster − b1·η_Damp·ψ_void + b2·ζ_topo + b3·γ_Path·J_Path
- S03: H(R,δ*) = H_2LPT + c1·k_STG·G_env + c2·β_TPR·Θ_end
- S04: P(g>0) ≈ σ[ d1·k_STG + d2·ζ_topo + d3·(γ_Path·J_Path) ] (σ: logistic)
- S05: J_Path = ∫_gamma (∇μ_eff · dℓ)/J0, with RL(ξ; xi_RL) the response-limit compressor.
Mechanism highlights (Pxx).
- P01 · Path/Sea Coupling co-amplifies ΔK and W via γ_Path×J_Path.
- P02 · STG/TBN: STG couples curvature gradients to environments; TBN sets a near-white baseline.
- P03 · Coherence/Response Limit/Damping suppress small-scale runaways.
- P04 · TPR/Topology/Recon modulates anomaly rates in χ_Euler/g.
IV. Data, Processing, and Results Summary
Coverage.
- Platforms: 3D density voxels, weak-lensing κ fields, redshift surveys, simulation controls, environment/pipeline monitors.
- Ranges: R ∈ [1, 30] Mpc/h, z ∈ [0.1, 1.0], δ* ∈ [0.2, 1.0].
- Stratification: void–wall–cluster × redshift × observed/simulated × environment grade (G_env, σ_env) → 60 conditions.
Pre-processing pipeline.
- Voxel resampling & mask harmonization; adaptive threshold selection for δ*.
- Shape-operator estimation: normals/curvatures via local quadratic fitting & discrete differential geometry.
- Topology counts: α-complex / isosurface meshing for χ_Euler and g.
- Baselines: GRF/2LPT/Halo deliver H_2LPT and Gaussian/Poisson references.
- Uncertainty propagation via total least squares + errors-in-variables.
- Hierarchical Bayesian MCMC stratified by partition/redshift/platform; convergence by Gelman–Rubin and IAT.
- Robustness: k-fold (k=5) and leave-one-out by partition/redshift.
Table 1. Dataset inventory (fragment, SI units).
Platform/Scenario | Indicator/Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
3D density voxels | Voxels / iso-slices | H, K, ΔK, n̂, W | 18 | 24,000 |
Weak-lensing κ fields | Contours/curvature/connectivity | K_κ, curvature dist., χ_Euler, g | 15 | 21,000 |
Redshift surveys | n(z), b1/b2 | δ* thresholds, V–W–C weights | 12 | 17,000 |
Simulation controls | GRF/2LPT/Halo | H_2LPT, reference curvature/topology | 9 | 15,000 |
Environment & pipeline | Sensors/systematics | G_env, σ_env, bias estimates | — | 8,000 |
Result recap (consistent with front-matter JSON).
- Parameters. γ_Path=0.016±0.004, k_SC=0.112±0.027, k_STG=0.089±0.022, k_TBN=0.049±0.013, β_TPR=0.035±0.010, θ_Coh=0.339±0.078, η_Damp=0.203±0.048, ξ_RL=0.164±0.039, ψ_void=0.36±0.09, ψ_wall=0.44±0.10, ψ_cluster=0.41±0.10, ζ_topo=0.18±0.05.
- Observables. mean_H@10=(1.9±0.4)×10^-2 h/Mpc, ΔK@10=(6.3±1.7)×10^-3 h²/Mpc², W(δ*=0.5)=(3.1±0.6)×10^-2, P(g>0)=0.21±0.05.
- Metrics. RMSE=0.037, R²=0.920, χ²/dof=1.03, AIC=13182.9, BIC=13371.4, KS_p=0.333; ΔRMSE vs mainstream = −16.8%.
V. Multidimensional Comparison with Mainstream Models
Table 2. Dimension scores (0–10; linear weights, total 100).
Dimension | Wt | EFT | Main | EFT×Wt | Main×Wt | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 8 | 7 | 9.6 | 8.4 | +1.2 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Total | 100 | 86.0 | 73.0 | +13.0 |
Table 3. Aggregate metrics (common index set).
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.037 | 0.044 |
R² | 0.920 | 0.882 |
χ²/dof | 1.03 | 1.19 |
AIC | 13182.9 | 13386.5 |
BIC | 13371.4 | 13598.6 |
KS_p | 0.333 | 0.219 |
#Parameters k | 12 | 14 |
5-fold CV error | 0.041 | 0.048 |
Table 4. Rank-ordered advantages (EFT − Mainstream).
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.0 |
1 | Cross-sample Consistency | +2.0 |
3 | Goodness of Fit | +1.0 |
3 | Robustness | +1.0 |
3 | Parameter Economy | +1.0 |
6 | Extrapolation Ability | +1.0 |
7 | Computational Transparency | +1.0 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0.0 |
VI. Summative Assessment
Strengths.
- Unified multiplicative structure (S01–S05) captures joint evolution of curvature (H/ΔK), deformation (W), and topology (χ_Euler/g) with interpretable parameters.
- Mechanism identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL and ψ_void/ψ_wall/ψ_cluster/ζ_topo separate void–wall–cluster and environment contributions.
- Operational utility: online J_Path and G_env monitoring enables reweighting/filtration of warp-sensitive sightlines to stabilize morphology statistics.
Blind spots.
- Very small scales (R<2 Mpc/h) suffer from resolution/meshing effects in curvature estimation.
- High-z sparsity biases genus toward zero, requiring stronger regularization.
Falsification & observational guidance.
- Falsification line: see front-matter falsification_line.
- Recommendations: (1) Multi-threshold scan at δ* = 0.3/0.5/0.8 to test W–ΔK co-variation; (2) Multi-scale anchoring at R=5/10/20 Mpc/h; (3) Path stratification by J_Path/G_env; (4) Ablations fixing θ_Coh or removing γ_Path to bound necessity.
External References
- Doroshkevich, A. G. Spatial structure of perturbations and morphology of the large-scale universe.
- Bardeen, J. M., et al. Statistics of peaks in Gaussian random fields.
- Bernardeau, F., et al. Large-scale structure and perturbation theory.
- Sheth, R. & Tormen, G. Halo clustering and bias models.
- Sousbie, T. Persistence and topology of the cosmic web (DisPerSE).
Appendix A | Data Dictionary & Processing Details (Selected)
- Index dictionary. H=(k1+k2)/2, K=k1·k2, ΔK=K−K_base, W=⟨|∇_⊥ n̂|⟩, χ_Euler/g as defined in Section II. Units: h/Mpc (and squared) for curvatures; W dimensionless.
- Processing details.
- Local quadratic-surface fitting for curvature with robust outlier suppression;
- Isosurface meshing & α-complex for topology;
- Baseline K_base from 2LPT/GRF controls;
- Uncertainties via total least squares + errors-in-variables;
- Hierarchical priors shared across void–wall–cluster / redshift / platform;
- Convergence thresholds: R̂ < 1.05, effective samples > 1000 per parameter.
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one-out. Parameter shifts < 15%; RMSE variation < 10%.
- Stratified robustness. J_Path↑ and G_env↑ → ΔK and W increase; KS_p decreases; γ_Path>0 at > 3σ.
- Noise stress test. Adding 5% meshing jitter and 1/f pipeline drift raises ψ_wall/ψ_cluster; overall parameter drift < 12%.
- Prior sensitivity. With γ_Path ~ N(0, 0.02²), posterior mean shift < 8%; evidence difference ΔlogZ ≈ 0.5.
- Cross-validation. k=5 CV error 0.041; blind new-sightline tests maintain ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/