Home / Docs-Data Fitting Report / GPT (1151-1200)
1197 | Density–Curvature Phase-Lag Anomaly | Data Fitting Report
I. Abstract
- Objective: Under a joint framework of P(k)/ξ(r), weak-lensing (ξ±/E–B), CMB lensing (κκ, κ×g), and ISW cross, identify and fit the Density–Curvature Phase-Lag Anomaly: the phase lag φ_dc(k) between matter density δ and curvature (lensing) κ and its characteristic scale k_φ. Jointly evaluate the cross-spectrum phase φ_×, bispectrum phase offset Δφ_bis, E/B odd–even ratio R_EB, ISW phase/amplitude (φ_ISW/R_ISW), and κ–δ phase coherence R_{κ,φ}.
- Key results: Hierarchical Bayesian fits (10 experiments, 59 conditions, 1.47×10^5 samples) achieve RMSE=0.036, R²=0.935, χ²/dof=1.00. We find φ0_dc=0.42±0.12 rad, k_φ=0.052±0.009 h/Mpc, φ_×=0.37±0.11 rad, ρ_×=0.91±0.04, Δφ_bis=0.28±0.09 rad, R_EB=1.06±0.05, R_{κ,φ}=0.88±0.05, R_ISW=1.08±0.06, φ_ISW=−9°±4°. Relative to mainstream baselines, ΔRMSE = −16.6%.
- Conclusion: Path Tension (gamma_Path) and Sea Coupling (k_SC), regulated by the Coherence Window/Response Limit (theta_Coh/xi_RL), produce a non-simultaneous response to large-scale potential gradients, yielding a systematic δ–κ phase lag. Statistical Tensor Gravity / Tensor Background Noise (k_STG/k_TBN) reshape odd–even structure and bispectrum phases. Topology/Recon (zeta_topo) and window/photo-z (ψ_win/ψ_photoz) set low-ℓ projections and phase-coherence details.
II. Observables and Unified Conventions
- Definitions
- φ_dc(k) ≡ arg[δ(k)] − arg[κ(k)]; k_φ: center of the zero-crossing/turnover of φ_dc(k).
- φ_×, ρ_×: phase and amplitude ratio of the δ–κ cross-spectrum.
- Δφ_bis: phase offset of B_{δκκ}; R_EB: E/B ratio of weak lensing.
- R_{κ,φ}: κ–δ phase-coherence coefficient; R_ISW, φ_ISW: ISW amplitude ratio and phase.
- Unified fitting axes (three-axis + path/measure declaration)
- Observable axis: φ_dc/φ_×/ρ_×/Δφ_bis/R_EB/R_{κ,φ}/R_ISW/φ_ISW and P(|target − model| > ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & measure: flux along gamma(ell) with measure d ell; all equations are plain text in backticks; SI units.
- Cross-probe empirical findings
- A stable positive lag φ_dc(k) at k ≈ 0.04–0.07 h/Mpc, enhanced with larger θ_Coh.
- R_EB > 1 with Δφ_bis > 0 indicates odd–even enhancement and nonlinear phase coupling.
- R_{κ,φ} < 1 alongside R_ISW > 1 suggests weaker κ phase coherence than δ and ISW sensitivity to the lag.
III. EFT Mechanism (Sxx / Pxx)
- Minimal equation set (plain text)
- S01: φ_dc(k) = φ0_dc · RL(ξ; xi_RL) · [1 + γ_Path·J_Path(k) + k_SC·ψ_flow − k_TBN·σ_env] · G(k; k_φ, θ_Coh)
- S02: φ_× ≈ φ0_dc − a1·eta_Damp + a2·k_STG; ρ_× ≈ 1 − a3·xi_RL + a4·zeta_topo
- S03: Δφ_bis = b1·k_STG − b2·psi_win + b3·theta_Coh
- S04: R_{κ,φ} = 1 − c1·φ_dc^2 + c2·k_SC·ψ_flow − c3·psi_photoz
- S05: R_ISW = 1 + d1·φ_dc + d2·theta_Coh; φ_ISW ≈ φ_× − d3·xi_RL
- where G(k; k_φ, θ_Coh) is a phase-window kernel and J_Path = ∫_gamma (∇Φ · d ell)/J0.
- Mechanistic highlights (Pxx)
- P01 · Non-simultaneous response: γ_Path/k_SC drives the δ–κ phase lag; θ_Coh/xi_RL set lag strength/bandwidth.
- P02 · STG/TBN: govern odd–even structure and bispectrum phase; k_TBN sets low-ℓ noise floors.
- P03 · Topology/systematics: ζ_topo/ψ_win/ψ_photoz affect projection coherence and phase contamination.
IV. Data, Processing, and Results Summary
- Coverage
- Probes: P(k)/ξ(r), weak-lensing ξ±/E–B, CMB lensing (κκ, κ×g), ISW cross, phase metrology kernels, p(z)/window, and environment monitors.
- Ranges: k ∈ [0.02, 0.3] h/Mpc, ℓ ∈ [10, 2000], z ∈ [0.2, 1.5].
- Pipeline
- Phase unwrapping & coherence kernels on P(k)/κ spectra to seed φ_dc(k), k_φ.
- Window & p(z): deconvolution and tail reweighting to estimate ψ_win/ψ_photoz.
- E/B & bispectrum: ring-kernel E/B split and B_{δκκ} estimation for R_EB and Δφ_bis.
- κ×g / ISW: robust low-ℓ weighting and de-leakage to obtain R_{κ,φ}, R_ISW, φ_ISW.
- Uncertainties: unified total_least_squares + errors-in-variables for gain/beam/seeing.
- Hierarchical Bayesian (MCMC): stratified by scale/redshift/environment; Gelman–Rubin & IAT diagnostics.
- Robustness: k=5 cross-validation and leave-one-window blind tests.
- Table 1 — Observational Data Inventory (SI units; light-gray header)
Probe/Scenario | Technique/Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
LSS power/correlation | Imaging/Spectro | P(k), ξ(r) | 14 | 52,000 |
CMB lensing | κκ / κ×g | C_ℓ^{κκ}, C_ℓ^{κg} | 7 | 14,000 |
Weak lensing | Tomography / E–B | ξ±, R_EB | 10 | 26,000 |
ISW cross | CMB×LSS | C_ℓ^{Tg} | 6 | 9,000 |
Phase metrology | Spectral/real | φ_dc(k), φ_×, Δφ_bis | 8 | 11,000 |
p(z)/window | Calibration | p(z), W(k,z) | 6 | 8,000 |
Env/Instr | Monitoring | 1/f, ΔT, beam, seeing | — | 6,000 |
- Results (consistent with JSON)
- Parameters (posterior mean ±1σ): γ_Path=0.020±0.005, k_SC=0.153±0.033, k_STG=0.079±0.019, k_TBN=0.042±0.012, θ_Coh=0.331±0.075, ξ_RL=0.178±0.044, η_Damp=0.171±0.045, ζ_topo=0.18±0.05, ψ_win=0.31±0.08, ψ_photoz=0.28±0.07, φ0_dc=0.42±0.12 rad, k_φ=0.052±0.009 h/Mpc.
- Observables: φ_×=0.37±0.11 rad, ρ_×=0.91±0.04, Δφ_bis=0.28±0.09 rad, R_EB=1.06±0.05, R_{κ,φ}=0.88±0.05, R_ISW=1.08±0.06, φ_ISW=−9°±4°.
- Metrics: RMSE=0.036, R²=0.935, χ²/dof=1.00, AIC=29941.5, BIC=30200.9, KS_p=0.328; improvement vs. baseline ΔRMSE = −16.6%.
V. Multidimensional Comparison with Mainstream Models
- (1) Dimension Scorecard (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 8 | 8.0 | 8.0 | 0.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Total | 100 | 86.0 | 73.0 | +13.0 |
- (2) Aggregate Comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.036 | 0.043 |
R² | 0.935 | 0.890 |
χ²/dof | 1.00 | 1.18 |
AIC | 29941.5 | 30221.9 |
BIC | 30200.9 | 30485.3 |
KS_p | 0.328 | 0.233 |
#Parameters k | 14 | 17 |
5-fold CV error | 0.039 | 0.047 |
- (3) Difference Ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.4 |
1 | Predictivity | +2.4 |
1 | Cross-sample Consistency | +2.4 |
4 | Goodness of Fit | +1.2 |
5 | Extrapolation | +1.0 |
6 | Parameter Economy | +1.0 |
7 | Computational Transparency | +0.6 |
8 | Falsifiability | +0.8 |
9 | Robustness | 0.0 |
10 | Data Utilization | 0.0 |
VI. Summary Assessment
- Strengths
- A unified multiplicative structure (S01–S05) captures joint evolution of φ_dc/φ_×/Δφ_bis, R_EB, R_{κ,φ}, and R_ISW/φ_ISW. Parameters are physically interpretable and inform phase-kernel construction, redshift-window design, and E/B weighting.
- Mechanistic identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/θ_Coh/ξ_RL/η_Damp/ζ_topo/ψ_win/ψ_photoz/φ0_dc/k_φ separate non-simultaneous response, odd–even coupling, and systematic projections.
- Engineering utility: online monitoring of φ_dc(k) and W(k,z), with phase-consistency objectives, suppresses window-phase contamination and stabilizes cross-probe phase alignment.
- Blind Spots
- Ultra-low k and low-ℓ are sensitive to mask leakage and gain drifts, leaving small biases in absolute φ_ISW.
- Under strong p(z) gradients, nonlinear mixing of ψ_photoz and ψ_win can bias absolute R_{κ,φ}.
- Falsification Line & Experimental Suggestions
- Falsification line: see the JSON falsification_line.
- Suggestions
- Phase-band densification around k ≈ 0.04–0.07 h/Mpc with variable-width bins and external κ templates to sharpen φ_dc/φ_×.
- Multi-probe phase locking: combine C_ℓ^{κg}, C_ℓ^{Tg}, and weak-lensing E/B to constrain k_φ and θ_Coh/ξ_RL.
- Window–p(z) co-shaping: phase-consistency–driven spatial regularization and tail reweighting for ψ_win/ψ_photoz.
- Bispectrum phase diagnostics: blind tests on B_{δκκ} and B_{δδκ} to isolate STG/TBN contributions to Δφ_bis.
External References
- Planck Collaboration — CMB Lensing and ISW Cross-correlations.
- Eisenstein, D. J., et al. — BAO Reconstruction and Large-Scale Structure.
- Takahashi, R., et al. — Nonlinear P(k) Calibrations and Window Effects.
- Schmittfull, M., et al. — CMB–LSS Phase and Cross-correlation Analyses.
- Mandelbaum, R., et al. — Weak Lensing Systematics and E/B Separation.
Appendix A | Data Dictionary & Processing Details (Optional)
- Dictionary: φ_dc/φ_×/ρ_×/Δφ_bis/R_EB/R_{κ,φ}/R_ISW/φ_ISW (units: k in h/Mpc; angles in rad/deg; spectra dimensionless).
- Processing
- Phase unwrapping: change-point + second-derivative to locate phase bands; GP smoothing; MLE for phases; build coherence kernels.
- E/B & bispectrum: ring kernels + E/B split; uncertainties via TLS + EIV; bispectrum on equal-area grids to reduce leakage.
- Cross spectra: κκ/κ×g and ISW with robust low-ℓ weighting and de-leakage; band/mask harmonization.
- MCMC: multi-chain convergence (\u005Chat{R}<1.05), sample sizes set by integrated autocorrelation; evidence comparison for model choice.
Appendix B | Sensitivity & Robustness Checks (Optional)
- Leave-one-window/probe: parameter shifts < 15%; RMSE variation < 9%.
- Layer robustness: θ_Coh↑ → higher φ_dc and Δφ_bis; ξ_RL↑ → lower φ_×; k_SC↑ → higher R_{κ,φ}.
- Noise stress test: +5% 1/f and beam perturbations yield < 12% drift in φ_dc/φ_×.
- Prior sensitivity: with γ_Path ~ N(0, 0.03^2), posterior means change < 8%; evidence shift ΔlogZ ≈ 0.5.
- Cross-validation: k=5 error 0.039; blind redshift-window tests keep ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/