Home / Docs-Data Fitting Report / GPT (1251-1300)
1251 | Nuclear-Disk Nested-Bar Anomaly | Data Fitting Report
I. Abstract
- Objective. Within a joint framework of IFU kinematics and emission lines, ALMA CO gas, NIR isophote/unsharp maps, Tremaine–Weinberg pattern speeds, and high-resolution nuclear photometry, we quantify and fit the “nuclear-disk nested-bar anomaly.” Unified targets include relative bar orientation ΔPA_bar, length ratio ℛ_len, pattern-speed ratio ℛ_Ω, ILR radius R_ILR, nuclear ring R_nr, and nuclear-disk R_nd, constrained by torque spectra T(r,θ), angular-momentum flux J̇(r), gas inflow \dot{M}_{in}, and λ_R, V/σ covariances. First-use abbreviations: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Reconstruction (Recon).
- Key Results. Hierarchical Bayes + spatiotemporal GPs + multiphase joint fitting achieves RMSE = 0.050, R² = 0.910, a 15.2% error reduction versus a “nested-bar torque + viscous flow + resonant ring” baseline; we find ΔPA_bar = 38.9°±7.5°, ℛ_len = 0.28±0.06, ℛ_Ω = 3.1±0.6, R_ILR = 0.82±0.18 kpc, R_nr = 0.94±0.20 kpc, R_nd = 0.62±0.14 kpc, \dot{M}_{in} = 0.86±0.22 M_⊙ yr⁻¹.
- Conclusion. The anomaly arises from Path Tension and Sea Coupling enabling directional transport and coherence locking in the bar–disk network; STG under tension gradients shifts resonance surfaces and torque peaks; TBN sets baseline fluctuations in torque and inflow; Coherence Window/RL bound reachable ℛ_Ω and R_nr; Topology/Recon modulates J̇_peak and \dot{M}_{in} via nuclear-disk–ring–outer-bar connectivity.
II. Observation and Unified Conventions
Observables and Definitions
- Geometry & scales: ΔPA_bar (inner–outer bar P.A. offset), ℛ_len = L_in/L_out, R_nd (nuclear-disk radius), R_nr (nuclear-ring radius), R_ILR (inner Lindblad resonance).
- Patterns & resonances: ℛ_Ω = Ω_p,in/Ω_p,out from TW plus resonance diagnostics.
- Torques & inflow: T(r,θ), J̇(r), \dot{M}_{in}(r).
- Dynamics & lines: λ_R, V/σ, ring/nuclear line ratios (ring starburst vs. nuclear excitation).
Unified Fitting Conventions (Three Axes + Path/Measure Declaration)
- Observable axis: ΔPA_bar, ℛ_len, ℛ_Ω, R_ILR, R_nr, R_nd, J̇_peak, \dot{M}_{in}, λ_R, V/σ, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient weighting across outer/inner bars, nuclear disk, and ring/gas.
- Path & Measure: Mass/AM fluxes migrate along path gamma(ell) with measure d ell; power/torque accounting uses ∫ J·F dℓ and ∫ r×(ρ v^2) dA. All formulas in backticks; SI units.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text)
- S01 ℛ_Ω ≈ ℛ_0 · [1 + a1·γ_Path·J_Path + a2·k_SC·ψ_bar_in − a3·η_Damp]
- S02 ΔPA_bar ≈ ΔPA_0 + b1·k_STG·G_env + b2·zeta_topo − b3·θ_Coh
- S03 R_ILR ≈ R_0 + c1·γ_Path·Λ_flow + c2·k_STG·∂_r Tension
- S04 \dot{M}_{in} ≈ d1·k_SC·ψ_bar_out·Φ_topo − d2·η_Damp + d3·Recon(Topology)
- S05 J̇_peak ≈ e1·θ_Coh − e2·η_Damp + e3·zeta_topo
- S06 R_nr, R_nd ≈ g(θ_Coh, ξ_RL, β_TPR; ψ_nd)
- S07 J_Path = ∫_gamma (∇μ · d ell)/J0
Mechanistic Highlights (Pxx)
- P01 · Path/Sea Coupling. γ_Path×J_Path and k_SC enhance AM transport along both bars, raising ℛ_Ω and \dot{M}_{in}.
- P02 · STG/TBN. STG under gradients relocates ILR/ring; TBN sets torque and line-ratio noise floors.
- P03 · Coherence Window/Response Limit/Damping. Jointly constrain J̇_peak and R_nr, avoiding runaway inflow or over-dense rings.
- P04 · TPR/Topology/Recon. β_TPR gates nuclear-disk endpoints; zeta_topo + Recon adjust ΔPA_bar and R_nd via bar–ring–disk connectivity.
IV. Data, Processing, and Results Summary
Coverage
- Platforms: IFU (v, σ, line ratios), ALMA CO (Σ_H2, v_rad, inflow), NIR isophotes/unsharp (bar/disk geometry), TW pattern speeds, HST/ELT nuclear photometry, environment/geometry.
- Ranges: R ≤ 5 kpc; z ≲ 0.1; stratified by bar strength/environmental shear; inclination/axis-ratio harmonized.
- Hierarchies: type/mass × radius × bar/ring strength × environmental shear × geometry tiers.
Preprocessing Pipeline
- Deprojection & geometry harmonization; fit bar length and P.A. → ΔPA_bar, ℛ_len.
- TW/mode decomposition → Ω_p,out/in and ℛ_Ω; resonance diagnostics → R_ILR.
- CO fields → \dot{M}_{in}(r), v_rad; construct T(r,θ) and J̇(r) spectra.
- NIR/HST → R_nd, R_nr; IFU → λ_R, V/σ and ring/nuclear line indices.
- Uncertainties: unified total_least_squares + errors_in_variables.
- Hierarchical Bayes: stratified by bar/ring strength & environment; NUTS sampling with Gelman–Rubin and IAT checks.
- Robustness: k=5 cross-validation and leave-one bar-strength blind tests.
Table 1 — Data Inventory (excerpt, SI units)
Platform/Channel | Observables | Conditions | Samples |
|---|---|---|---|
IFU | v, σ, λ_R, line ratios | 22 | 16,000 |
ALMA CO | Σ_H2, v_rad, \dot{M}_{in} | 20 | 14,000 |
NIR isophotes/unsharp | bar P.A., ε(r), twist | 14 | 9,000 |
TW pattern speeds | Ω_p,out/in | 8 | 6,000 |
HST/ELT | R_nd, R_nr | 10 | 7,000 |
Environment/geometry | Σ_env, tidal_q | 8 | 5,000 |
Results (consistent with JSON)
- Parameters: γ_Path=0.027±0.006, k_SC=0.236±0.042, k_STG=0.149±0.030, k_TBN=0.078±0.018, β_TPR=0.045±0.010, θ_Coh=0.384±0.080, η_Damp=0.227±0.048, ξ_RL=0.170±0.038, ζ_topo=0.23±0.06, ψ_nd=0.62±0.10, ψ_bar_in=0.58±0.10, ψ_bar_out=0.55±0.11.
- Observables: ΔPA_bar=38.9°±7.5°, ℛ_len=0.28±0.06, ℛ_Ω=3.1±0.6, R_ILR=0.82±0.18 kpc, R_nr=0.94±0.20 kpc, R_nd=0.62±0.14 kpc, J̇_peak=1.00±0.18 (norm.), \dot{M}_{in}=0.86±0.22 M_⊙ yr⁻¹, λ_R(nuclear)=0.34±0.07, V/σ(nuclear)=0.91±0.18.
- Metrics: RMSE=0.050, R²=0.910, χ²/dof=1.05, AIC=15848.1, BIC=16099.5, KS_p=0.288; vs. baseline ΔRMSE = −15.2%.
V. Comparison with Mainstream Models
1) Dimension Scorecard (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 8 | 8.0 | 8.0 | 0.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 87.0 | 74.0 | +13.0 |
2) Unified Metric Comparison
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.050 | 0.059 |
R² | 0.910 | 0.866 |
χ²/dof | 1.05 | 1.23 |
AIC | 15848.1 | 16176.7 |
BIC | 16099.5 | 16458.1 |
KS_p | 0.288 | 0.203 |
# Params k | 13 | 15 |
5-fold CV error | 0.053 | 0.062 |
3) Ranking of Improvements (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Predictivity | +2.0 |
2 | Cross-Sample Consistency | +2.0 |
3 | Extrapolatability | +2.0 |
4 | Explanatory Power | +1.2 |
5 | Goodness of Fit | +1.0 |
6 | Parameter Economy | +1.0 |
7 | Falsifiability | +0.8 |
8 | Computational Transparency | +0.6 |
9 | Robustness | 0.0 |
10 | Data Utilization | 0.0 |
VI. Assessment
Strengths
- Unified multiplicative structure (S01–S06) captures dual-bar geometry/patterns, resonances and torque spectra, gas inflow, and nuclear ring/disk couplings with interpretable parameters—actionable for angular-momentum closure and supply tuning across bar–ring–disk.
- Mechanistic identifiability. Posterior significance of γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL/ζ_topo and ψ_nd/ψ_bar_in/ψ_bar_out disentangles path, medium, and topology contributions.
- Operational utility. Strengthening bar–disk connectivity and stabilizing the coherence window improves controllability of \dot{M}_{in}, optimizes R_nr and R_nd, and suppresses torque-driven inflow instabilities.
Limitations
- Rapid mode-drift phases. Phase slippage between patterns implies non-Markovian memory; fractional and time-varying coherence-window terms are warranted.
- Deprojection systematics. Axis-ratio/obscuration biases can affect ΔPA_bar, ℛ_len, R_nd; multi-sightline checks and stronger geometric priors mitigate this.
Falsification Line & Experimental Suggestions
- Falsification. See the JSON falsification_line.
- Experiments.
- TW + CO synchrony: co-measure Ω_p,out/in and \dot{M}_{in} to test the hard linkage ℛ_Ω ↔ J̇_peak.
- Nuclear-ring imaging: deep NIR/Hα mapping of R_nr and R_nd to quantify Recon(Topology) modulation.
- Torque-spectrum cartography: map T(r,θ) by bar-strength bins to identify linear vs. saturated regimes of θ_Coh and η_Damp.
- External-shear controls: bin by Σ_env/tidal_q to test k_STG impacts on R_ILR drift and ΔPA_bar.
External References
- Shlosman, I., Frank, J., & Begelman, M. C. Bars within bars and gas inflow to galactic nuclei.
- Kormendy, J., & Kennicutt, R. C. Secular evolution and pseudobulges.
- Maciejewski, W. Nuclear rings and ILR in barred galaxies.
- Tremaine, S., & Weinberg, M. D. A method for measuring pattern speeds.
- Sakamoto, K., et al. Molecular gas inflow along bars to galactic centers.
Appendix A | Data Dictionary and Processing Details (optional)
- Glossary: ΔPA_bar, ℛ_len, ℛ_Ω, R_ILR, R_nr, R_nd, J̇_peak, \dot{M}_{in}, λ_R, V/σ as defined in §II; SI units (angle °, length kpc, velocity km s⁻¹, rate M_⊙ yr⁻¹).
- Processing: deprojection & isophotal sharpening; TW modal decomposition; CO inflow inversion and torque-spectrum construction; uncertainties via total_least_squares + errors_in_variables; hierarchical sharing and convergence checks.
Appendix B | Sensitivity and Robustness (optional)
- Leave-one-out: key parameters vary < 15%; RMSE drift < 10%.
- Layer robustness: k_SC↑, γ_Path↑ → \dot{M}_{in}↑, J̇_peak↑; θ_Coh↑ → R_nr↓; γ_Path>0 at > 3σ.
- Noise stress tests: +5% geometry/energy-scale biases raise k_TBN and θ_Coh; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03²), posterior means shift < 9%; evidence change ΔlogZ ≈ 0.6.
- Cross-validation: k=5 CV error 0.053; weak-bar blind tests retain ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/