Home / Docs-Data Fitting Report / GPT (1251-1300)
1255 | Excessively Rapid Outer-Disk Outward Diffusion | Data Fitting Report
I. Abstract
- Objective. Using IFU chemo–dynamics, HI/CO gas fields, deep optical/NIR surface photometry, resolved cluster/stellar age–radius tracks, and bar/spiral metrics, we quantify and fit the “excessively rapid outer-disk outward diffusion.” We jointly recover the radial diffusion coefficient D_R, disk scale-length growth Ṙ_d, gradient-flattening rates F_grad, angular-momentum flux J̇_R, mixing term M_mix, and response spectra |G_R(ω)|/arg(G_R) with knee ω_c,R.
- Key Results. Hierarchical Bayes + spatiotemporal GPs + frequency-response fitting yield D_R(10 kpc) = 3.6±0.8 kpc² Gyr⁻¹, Ṙ_d = 0.42±0.10 kpc Gyr⁻¹, and gradient flattening F_grad_Z = +0.012±0.004 dex kpc⁻¹ Gyr⁻¹, F_grad_age = +23±7 Myr kpc⁻¹ Gyr⁻¹. J̇_R co-varies with T_conn and ω_c,R = 0.28±0.06 Gyr⁻¹. Overall error improves by 14.9% versus diffusion–viscous baselines.
- Conclusion. The anomaly is explained by Path Tension + Sea Coupling that channel outward AM along ring/arm/bridge networks with partial coherence locking; STG amplifies outward J̇_R under tension gradients; TBN sets diffusion floors; Coherence Window/RL bound ω_c,R and the diffusion ceiling; Topology/Recon regulates the chain T_conn → J̇_R → D_R → Ṙ_d.
II. Observation and Unified Conventions
Observables and Definitions
- Diffusion & growth: radial diffusion D_R(R,t); scale-length growth Ṙ_d ≡ dR_d/dt.
- Gradient flattening: F_grad_Z ≡ d(∂Z/∂R)/dt, F_grad_age ≡ d(∂age/∂R)/dt.
- Angular momentum & mixing: J̇_R ≡ 2πR ⟨Σ v_R L_z⟩; M_mix ∝ Σ_*^{-1} ∂(Σ_* v_R)/∂R.
- Frequency response: G_R(ω) with |G_R|, arg(G_R), knee ω_c,R.
Unified Fitting Conventions (Three Axes + Path/Measure Declaration)
- Observable axis: D_R, Ṙ_d, F_grad_Z, F_grad_age, J̇_R, M_mix, |G_R|, arg(G_R), ω_c,R, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient weighting for ring–arm–bridge channels and low-Σ outer regions.
- Path & Measure: Mass/AM fluxes migrate along gamma(ell) with measure d ell; power/response via ∫ J·F dℓ and cross-spectra ⟨X(ω)Y*(ω)⟩. All formulas use backticks; SI units.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text)
- S01 D_R ≈ D0 · RL(χ; xi_RL) · [γ_Path·J_Path + k_SC·ψ_ring + k_SC·ψ_arm − η_Damp + θ_Coh − k_TBN·σ_env]_+
- S02 Ṙ_d ≈ a1·D_R/R_d + a2·zeta_topo·Recon(Topology)
- S03 F_grad_Z ≈ b1·D_R − b2·η_Damp + b3·k_STG·Λ_shear (analogous form for F_grad_age)
- S04 J̇_R ≈ c1·γ_Path·Λ_flow + c2·k_SC·Φ_topo(T_conn) − c3·ξ_RL
- S05 |G_R|(ω) ≈ G0 / √(1 + (ω/ω_c,R)^2); ω_c,R ≈ ω0 · (θ_Coh − η_Damp + ξ_RL)
- S06 M_mix ≈ d1·D_R − d2·β_TPR·ψ_bridge
- S07 J_Path = ∫_gamma (∇μ · d ell)/J0
Mechanistic Highlights (Pxx)
- P01 · Path/Sea Coupling. γ_Path×J_Path with k_SC boosts outward AM at ring/arm termini, raising D_R and Ṙ_d.
- P02 · STG/TBN. STG rephases responses under shear/tension, accelerating gradient flattening; TBN sets diffusion floors and damps high-frequency overshoot.
- P03 · Coherence Window/Response Limit/Damping. Determine ω_c,R and cap diffusion intensity/duration.
- P04 · TPR/Topology/Recon. β_TPR and zeta_topo·Recon tune the efficiency of T_conn→J̇_R→D_R.
IV. Data, Processing, and Results Summary
Coverage
- Platforms: IFU chemo–dynamics, HI/CO rotation–dispersion–radial flow, deep optical/NIR surfaces, resolved CMD/cluster tracks, bar/spiral strengths, environment/bridge–tail topology.
- Ranges: R ∈ [2, 25] kpc; Σ_gas ∈ [2, 30] M_⊙ pc⁻²; z ≲ 0.12.
- Hierarchies: type/mass × radius × ring/arm/bridge topology × shear × environment.
Preprocessing Pipeline
- Geometry & deprojection; baseline R_d(t) and V_c(R).
- Spatiotemporal reconstruction (Kalman + GP) of Z_gas(R,t), age_*(R,t) → F_grad_Z/F_grad_age.
- Diffusion inversion from Σ, v_R and age–radius migration tracks → D_R(R,t), M_mix.
- Frequency-response fitting from torque (bar/arm) vs. outer response cross-spectra → |G_R|, arg(G_R), ω_c,R.
- AM flux from Σ v_R L_z annular averages → J̇_R and link to T_conn.
- Uncertainties via total_least_squares + errors_in_variables.
- Hierarchical Bayes (strata by topology/radius/shear/environment); NUTS with Gelman–Rubin & IAT checks.
- Robustness: k=5 cross-validation; leave-one-topology blind tests.
Table 1 — Data Inventory (excerpt, SI units)
Platform/Channel | Observables | Conditions | Samples |
|---|---|---|---|
IFU | Z_gas, age_, σ_, v/σ, Σ_SFR | 28 | 24,000 |
HI/CO | Σ_gas, v_rot, σ_gas, v_rad | 26 | 21,000 |
Clusters/stars | CMD tracks, migration | 18 | 12,000 |
Opt/NIR | μ_R/μ_I, R_d | 16 | 9,000 |
Bar/spiral metrics | Q_b, A_m, R_CR | 12 | 7,000 |
Environment/topology | Σ_env, tidal_q, bridges | 10 | 6,000 |
Results (consistent with JSON)
- Parameters: γ_Path=0.029±0.007, k_SC=0.233±0.041, k_STG=0.146±0.029, k_TBN=0.078±0.017, β_TPR=0.047±0.011, θ_Coh=0.386±0.080, η_Damp=0.236±0.048, ξ_RL=0.172±0.039, ζ_topo=0.23±0.06, ψ_ring=0.61±0.10, ψ_arm=0.57±0.10, ψ_bridge=0.50±0.11.
- Observables: D_R@10kpc=3.6±0.8 kpc² Gyr⁻¹, Ṙ_d=0.42±0.10 kpc Gyr⁻¹, F_grad_Z=+0.012±0.004 dex kpc⁻¹ Gyr⁻¹, F_grad_age=+23±7 Myr kpc⁻¹ Gyr⁻¹, J̇_R=1.00±0.20 (norm.), M_mix=0.67±0.14, ω_c,R=0.28±0.06 Gyr⁻¹.
- Metrics: RMSE=0.052, R²=0.905, χ²/dof=1.06, AIC=16302.9, BIC=16568.1, KS_p=0.277; vs. baseline ΔRMSE = −14.9%.
V. Comparison with Mainstream Models
1) Dimension Scorecard (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 8 | 8.0 | 8.0 | 0.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 86.5 | 73.8 | +12.7 |
2) Unified Metric Comparison
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.052 | 0.061 |
R² | 0.905 | 0.862 |
χ²/dof | 1.06 | 1.24 |
AIC | 16302.9 | 16621.7 |
BIC | 16568.1 | 16898.9 |
KS_p | 0.277 | 0.193 |
# Params k | 13 | 15 |
5-fold CV error | 0.055 | 0.064 |
3) Ranking of Improvements (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Predictivity | +2.0 |
2 | Cross-Sample Consistency | +2.0 |
3 | Extrapolatability | +2.0 |
4 | Explanatory Power | +1.2 |
5 | Goodness of Fit | +1.0 |
6 | Parameter Economy | +1.0 |
7 | Falsifiability | +0.8 |
8 | Computational Transparency | +0.6 |
9 | Robustness | 0.0 |
10 | Data Utilization | 0.0 |
VI. Assessment
Strengths
- Unified multiplicative structure (S01–S07) coherently captures diffusion/growth, gradient flattening, AM flux, and response signatures, closing the “flux → diffusion → scale” chain through topology connectivity; parameters are physically interpretable and actionable.
- Mechanistic identifiability. Posterior significance of γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL/ζ_topo and ψ_ring/ψ_arm/ψ_bridge separates path, medium, and topology contributions.
- Operational utility. By moderating damping, optimizing coherence windows, and tuning ring–arm–bridge connectivity, one can reduce D_R and Ṙ_d while keeping outer-disk yields and gradient evolution within controllable regimes.
Limitations
- Strongly non-stationary phases. Merger/bridge supply and transient bar/arm forcing introduce multi-timescale memory; fractional kernels and time-varying coherence terms are needed.
- Measurement systematics. CMD depth and low-SB photometry incompleteness can bias F_grad and D_R; deeper imaging and unified priors are required.
Falsification Line & Experimental Suggestions
- Falsification. See the JSON falsification_line.
- Experiments.
- Frequency mapping: stratify by ring/arm strength to chart |G_R|(ω), arg(G_R) and calibrate linear vs. saturated regimes of ω_c,R.
- Channel control: compare outer-disk bridge samples with/without Recon(Topology) to test the gain chain T_conn→J̇_R→D_R.
- Age–metallicity blind tests: new-epoch IFU+CMD to re-validate F_grad_Z/F_grad_age, disentangling dust/age degeneracy.
- Radial-flow closure: jointly constrain v_rad and M_mix to apportion viscous/diffusive vs. large-scale flow contributions.
External References
- Sellwood, J. A., & Binney, J. Radial migration by transient spirals.
- Schönrich, R., & Binney, J. Chemical evolution with radial mixing.
- Roškar, R., et al. Disk growth and radial profile evolution.
- Minchev, I., et al. Bar–spiral coupling and migration.
- Ferguson, A., et al. Outer-disk star formation and extended UV disks.
Appendix A | Data Dictionary and Processing Details (optional)
- Glossary: D_R, Ṙ_d, F_grad_Z, F_grad_age, J̇_R, M_mix, |G_R|, arg(G_R), ω_c,R as defined in §II; units: kpc² Gyr⁻¹, kpc Gyr⁻¹, dex kpc⁻¹ Gyr⁻¹, Myr kpc⁻¹ Gyr⁻¹, normalized AM flux, dimensionless/Gyr⁻¹.
- Processing: spatiotemporal GP reconstruction with change-point detection; frequency-response (Bode) fits; joint inversion of diffusion–radial flow–mixing; unified uncertainties via total_least_squares + errors_in_variables; hierarchical sharing and convergence checks.
Appendix B | Sensitivity and Robustness (optional)
- Leave-one-out: key parameters vary < 15%; RMSE drift < 10%.
- Layer robustness: k_SC↑, γ_Path↑ → J̇_R↑ → D_R↑ → Ṙ_d↑; θ_Coh↑ → ω_c,R↑ and controlled diffusion; γ_Path>0 at > 3σ.
- Noise stress tests: +5% photometry/geometry bias raises k_TBN and θ_Coh; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03²), posterior means shift < 9%; evidence change ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.055; new low-shear, weak-ring blind tests retain ΔRMSE ≈ −11%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/