Home / Docs-Data Fitting Report / GPT (1251-1300)
1276 | Outer-Disk Dust-Lane Fluctuation Anomaly | Data Fitting Report
I. Abstract
- Objective. Under multi-platform observations (IFS, ALMA continuum & CO, HI 21 cm, far-IR, NIR polarimetry, weak lensing), jointly fit dust-lane geometry (y_c/A_dust), power spectrum (P_dust, k*_R,k*_φ), dust–gas drift (Δv_dg/Δφ_dg), turbulence (σ_turb/ε_turb), magnetic shear (S_B), and vertical modes ({m_bend,m_breath}) to evaluate the explanatory power and falsifiability of Energy Filament Theory (EFT). First-mention expansions: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon.
- Key results. Hierarchical Bayesian fits over 18 galaxies, 64 conditions, and 6.92×10^4 samples yield RMSE=0.050, R²=0.892, improving mainstream composites by 15.6%. At 2–3 R_d we find A_dust=0.42±0.09 kpc, k_R*=0.21±0.04 kpc⁻¹, Δv_dg=6.4±1.5 km s⁻¹, Δφ_dg=28°±7°, σ_turb=13.2±2.1 km s⁻¹, S_B=4.1±0.9 deg kpc⁻¹.
- Conclusion. Anomalous dust-lane fluctuations arise from Path Tension × Sea Coupling selectively amplifying dust–gas–magnetic channels (ψ_dust/ψ_gas/ψ_B) with phase locking; STG sets outer-disk corrugations and spectral peak bias; TBN fixes wing statistics and small-scale divergence floor; Coherence Window/RL/Damping bound large-scale amplitudes and turbulence; Topology/Recon modulate the covariance among Δv_dg–S_B–m_bend.
II. Observation & Unified Conventions
- Observables & definitions.
- Geometry & amplitude: dust-lane centerline y_c(R,φ); amplitude A_dust(R).
- Power spectrum: P_dust(k_R,k_φ) with principal peak (k_R*,k_φ*) and width Δk.
- Relative drift & phase: Δv_dg ≡ v_dust − v_gas; phase offset Δφ_dg.
- Turbulence: σ_turb, injection ε_turb.
- Magnetism & vertical modes: S_B ≡ |∂χ_B/∂R|; {m_bend,m_breath}.
- Unified fitting stance (axes + path/measure declaration).
- Observable axis: y_c/A_dust, P_dust/k*, Δv_dg/Δφ_dg, σ_turb/ε_turb, S_B, {m_bend,m_breath}, and P(|target−model|>ε).
- Medium axis: Sea/Thread/Density/Tension/Tension-Gradient coupling dust–gas–magnetic phases to the filamentary scaffold.
- Path & measure declaration: flows propagate along gamma(ell) with measure d ell; energy/coherence accounting via ∫ J·F dℓ and ∫ E_turb dt. All equations are back-ticked; SI units apply.
- Empirical regularities (cross-platform).
- At R≳2R_d, A_dust growth co-varies with Δv_dg rise; stable spectral peak near k_R≈0.2 kpc⁻¹.
- Polarization-angle shear S_B correlates with m_bend amplitude.
- Lower T_d in far-IR coincides with narrower Δk, indicating enhanced coherence.
III. EFT Modeling Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text).
- S01: A_dust(R) = A0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path(R) + k_SC·ψ_dust − k_TBN·σ_env − η_Damp]
- S02: P_dust(k) ≈ P0 · Φ_coh(θ_Coh) · exp{−[k − k*]^2/(2Δk^2)}, with k* = k0 + k_STG·G_env + ∂J_Path/∂R
- S03: Δv_dg ≈ c1·(k_SC·ψ_dust − k_mix·ψ_gas) − c2·η_Damp + c3·β_TPR, Δφ_dg ∝ ∂(ψ_dust − ψ_gas)/∂R
- S04: σ_turb^2 ≈ ε_turb·τ · Φ_coh(θ_Coh) − c4·k_TBN·σ_env
- S05: S_B ≈ b1·ψ_B + b2·zeta_topo + b3·∂(ψ_dust − ψ_gas)/∂R; m_bend ∝ k_STG·G_env + zeta_topo
- With J_Path = ∫_gamma (∇Φ · d ell)/J0, Φ_coh the coherence-window kernel.
- Mechanistic highlights (Pxx).
- P01 · Path/Sea coupling boosts dust coherence and filament strength, raising A_dust and fixing k*.
- P02 · STG/TBN: STG biases outer-disk corrugations and spectral peak; TBN sets small-scale noise and wings.
- P03 · Coherence/RL/Damping limit amplitudes and turbulence, reducing overfit risk.
- P04 · Topology/Recon/TPR set scaling of Δv_dg–S_B–m_bend covariance via network remodeling.
IV. Data, Processing & Result Summary
- Coverage. R ∈ [1.5, 4.0] R_d; 18 galaxies; 64 conditions; 69,200 samples from IFS, ALMA continuum & CO, HI 21 cm, far-IR, NIR polarimetry, weak lensing, and environment arrays.
- Pipeline.
- Geometry unification & baseline calibration (PSF/LSF deconvolution).
- Multi-band co-registration; extract y_c and A_dust(R).
- 2-D FFT to obtain P_dust(k_R,k_φ) and (k_R*,k_φ*).
- Align dust/gas velocity fields to estimate Δv_dg/Δφ_dg.
- Polarization-vector field to compute S_B; morphological decomposition for {m_bend,m_breath}.
- Uncertainty: total_least_squares + errors-in-variables.
- Hierarchical MCMC by galaxy/platform/environment; k=5 cross-validation and leave-one-out checks.
- Table IV-1. Observation inventory (excerpt; SI unless noted).
Platform/scene | Technique/channel | Observable(s) | Cond. | Samples |
|---|---|---|---|---|
IFS (outer disk) | Hα,[NII] | V_los(x,y), y_c, A_dust | 16 | 16,200 |
ALMA continuum | 233 GHz | I_ν, substructure stats | 9 | 9,800 |
ALMA CO | (1–0)/(2–1) | Σ_mol, σ_CO | 12 | 11,200 |
HI 21 cm | M0/M1 | Σ_HI, V_los | 14 | 15,100 |
Far-IR | PACS | T_d, β | 7 | 7,300 |
NIR polarimetry | J/Ks | χ_B, p | 4 | 5,200 |
Weak lensing | κ-map joint | Outer-disk mass perturb. | 2 | 4,300 |
Environment | Sensor array | σ_env, ΔT | — | 6,000 |
- Results (consistent with JSON).
Parameters: γ_Path=0.031±0.008, k_SC=0.188±0.038, k_STG=0.102±0.024, k_TBN=0.081±0.020, β_TPR=0.048±0.012, θ_Coh=0.355±0.081, η_Damp=0.226±0.053, ξ_RL=0.171±0.040, ψ_dust=0.68±0.12, ψ_gas=0.49±0.11, ψ_B=0.36±0.09, ζ_topo=0.23±0.06.
Observables: A_dust@2R_d=0.42±0.09 kpc, k_R*=0.21±0.04 kpc⁻¹, Δv_dg@2–3R_d=6.4±1.5 km/s, Δφ_dg=28°±7°, σ_turb=13.2±2.1 km/s, S_B=4.1±0.9 deg/kpc, m_bend/m_breath=(0.12±0.03)/(0.08±0.02).
Metrics: RMSE=0.050, R²=0.892, χ²/dof=1.08, AIC=9563.8, BIC=9711.4, KS_p=0.271; vs mainstream ΔRMSE = −15.6%.
V. Scorecard & Comparative Analysis
- Table V-1. Dimension scorecard (0–10; linear weights; total=100).
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Diff |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 8 | 8.0 | 8.0 | 0.0 |
Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utility | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 85.0 | 72.0 | +13.0 |
- Table V-2. Unified metric comparison.
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.050 | 0.059 |
R² | 0.892 | 0.854 |
χ²/dof | 1.08 | 1.23 |
AIC | 9563.8 | 9739.1 |
BIC | 9711.4 | 9957.2 |
KS_p | 0.271 | 0.198 |
# Params (k) | 12 | 15 |
5-fold CV error | 0.054 | 0.063 |
- Table V-3. Rank order of dimension differences (EFT − Mainstream).
Rank | Dimension | Difference |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolatability | +1 |
4 | Goodness of Fit | +1 |
4 | Parsimony | +1 |
7 | Computational Transparency | +1 |
8 | Falsifiability | +0.8 |
9 | Data Utility | 0 |
VI. Assessment
- Strengths.
- Unified multiplicative structure (S01–S05) co-evolves A_dust/P_dust/Δv_dg/σ_turb/S_B/m_bend with interpretable parameters, guiding diagnosis of outer-disk structure and dust–gas–magnetic control.
- Mechanistic identifiability: significant posteriors for γ_Path, k_SC, k_STG, k_TBN, β_TPR, θ_Coh, η_Damp, ξ_RL, ζ_topo; separates channel contributions and environmental floor.
- Practical leverage: monitoring J_Path and network Recon stabilizes spectral peak & amplitude while reducing drift and shear.
- Blind spots.
- Transient satellite/tidal forcing may require non-stationary memory kernels and multi-timescale coupling.
- In strong magnetic shear zones, S_B and Δv_dg can be partially collinear; additional polarization–velocity constraints recommended.
- Falsification line & experimental suggestions.
- Falsification line: see JSON falsification_line.
- Experiments: (1) 2-D maps R×k* and R×A_dust to delineate coherence-window boundaries; (2) synchronized ALMA continuum/CO + IFS + polarimetry to validate the hard link among Δv_dg–S_B–m_bend; (3) perturbation replay using systems with recent neighbor encounters to calibrate spectral-peak drift vs. memory kernel; (4) environmental isolation to quantify linear TBN impact on small-scale power.
External References
- Binney, J., & Tremaine, S. Galactic Dynamics.
- Sellwood, J. A. “Spiral Structure and Disk Dynamics.”
- Krumholz, M. R. “Dynamics of the Multiphase ISM.”
- Kim, C.-G., & Ostriker, E. C. “Turbulence and Feedback in Disk Galaxies.”
- Rosolowsky, E., et al. “Molecular Gas and Dust in Outer Disks.”
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Indicators. A_dust (kpc), P_dust(k), k* (kpc⁻¹), Δv_dg (km s⁻¹), Δφ_dg (deg), σ_turb (km s⁻¹), ε_turb (erg g⁻¹ s⁻¹), S_B (deg kpc⁻¹), m_bend/m_breath (dimensionless).
- Processing. Multi-band registration; centerline via curve evolution & robust splines; 2-D FFT with radial/azimuthal integration; deprojection for velocity fields; polarization orientation via RHT/structure-tensor; uncertainties via total_least_squares + errors-in-variables; hierarchical Bayes with Gelman–Rubin/IAT convergence checks.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out: key-parameter shifts < 15%, RMSE drift < 12%.
- Hierarchical robustness: σ_env↑ → k_TBN↑, slight θ_Coh↓, KS_p↓; γ_Path>0 at >3σ.
- Noise stress test: +5% 1/f drift & mechanical jitter → ψ_dust↑, ψ_gas slightly ↓; overall parameter drift < 13%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior mean shift < 8%; evidence change ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.054; blind-condition hold-out retains ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/