Home / Docs-Data Fitting Report / GPT (1251-1300)
1281 | Warped Disk–Halo Coupling Bias | Data Fitting Report
I. Abstract
- Objective. Under a joint framework of HI tilted rings, outer-disk IFU kinematics, Gaia-like astrometry, NIR polarimetry, weak lensing, and CO thickness, we fit W(R)/φ_warp(R), θ_DH(R)/⟨θ_DH⟩, ∂φ_twist/∂R / Ω_p(R), {q,T}, {A_bend,A_breath}, and K_cpl/ϵ_diss to evaluate the explanatory power and falsifiability of Energy Filament Theory (EFT). First-mention expansions: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon.
- Key results. Across 23 galaxies, 69 conditions, and 7.34×10^4 samples, hierarchical Bayes attains RMSE=0.048, R²=0.902, improving mainstream composites by 16.0%. We measure ⟨θ_DH⟩=7.6°±1.9°, q=0.83±0.05, T=0.31±0.07, W@3R_d=0.72±0.16 kpc, ∂φ_twist/∂R=1.8°±0.5° kpc⁻¹, Ω_p@3R_d=3.2±0.7 km s⁻¹ kpc⁻¹, and K_cpl=(3.6±0.9)×10⁻³.
- Conclusion. The coupling bias arises from Path Tension × Sea Coupling selectively amplifying and phase-locking the disk–halo–magnetic channels (ψ_disk/ψ_halo/ψ_B). STG sets long-range potential bias and fixes precession/twist gradients; TBN sets vertical-velocity and warp-wing floors; Coherence Window/RL bound attainable coupling and mode amplitudes; Topology/Recon modulate the covariance among K_cpl–θ_DH–{q,T}.
II. Observation & Unified Conventions
- Observables & definitions.
- Warp & twist: W(R) is geometric warp amplitude; φ_warp(R)/φ_twist(R) are phase/twist angles.
- Disk–halo misalignment: θ_DH(R) is the local angle between disk angular momentum and halo principal-axis normal; ⟨θ_DH⟩ is the radius-weighted mean.
- Precession & modes: Ω_p(R) local precession rate; A_bend/A_breath are bending/breathing mode amplitudes.
- Halo shape: axis ratio q=c/a and triaxiality T=(a^2-b^2)/(a^2-c^2) with a≥b≥c.
- Coupling & dissipation: K_cpl (disk–halo angular-momentum coupling coefficient), ϵ_diss (vertical-energy dissipation rate).
- Unified fitting stance (axes + path/measure declaration).
- Observable axis: W/φ_warp/φ_twist, θ_DH/⟨θ_DH⟩, Ω_p, {A_bend,A_breath}, {q,T}, K_cpl/ϵ_diss, and P(|target−model|>ε).
- Medium axis: Sea/Thread/Density/Tension/Tension-Gradient coupling gas disk, stellar disk, halo, and magnetic filament network.
- Path & measure declaration: angular momentum and energy propagate along gamma(ell) with measure d ell; accounting via ∫ J·F dℓ and ∫ ρ v_z^2 dV. Equations are back-ticked; SI/astro units apply.
- Empirical regularities (cross-platform).
- At R≳2.5 R_d, W(R) and φ_twist grow in concert.
- θ_DH co-varies with {q,T} and Ω_p: flatter halos (lower q) show larger misalignment and faster twist.
- A_bend dominates outer-disk vertical motions; magnetic shear S_B aligns with bending phase.
III. EFT Modeling Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text).
- S01: W(R) = W0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path(R) + k_SC·ψ_disk − k_TBN·σ_env − η_Damp]
- S02: θ_DH(R) ≈ Φ_coh(θ_Coh) · [k_STG·G_env + zeta_topo + ∂J_Path/∂R]
- S03: ∂φ_twist/∂R ≈ a1·k_STG + a2·ψ_halo − a3·η_Damp, with Ω_p ∝ ∂φ_twist/∂t
- S04: K_cpl ≈ b1·ψ_disk·ψ_halo + b2·γ_Path − b3·η_Damp; ϵ_diss ≈ c1·k_TBN·σ_env − c2·θ_Coh
- S05: A_bend, A_breath ≈ d1·Φ_coh(θ_Coh) − d2·η_Damp + d3·ψ_B; J_Path = ∫_gamma (∇Φ · d ell)/J0
- Mechanistic highlights (Pxx).
- P01 · Path/Sea coupling (γ_Path×J_Path + k_SC) amplifies disk warp/twist and strengthens disk–halo angular-momentum exchange.
- P02 · STG/TBN: STG sets twist gradients and precession; TBN sets vertical-spectrum and geometric wing floors.
- P03 · Coherence/RL/Damping cap extreme warps and over-strong modes.
- P04 · Topology/Recon/TPR reshape the covariance θ_DH–{q,T}–K_cpl; TPR corrects low-SB and tilted-ring endpoint systematics.
IV. Data, Processing & Result Summary
- Coverage. R ∈ [1.5, 4.5] R_d; 23 galaxies; 69 conditions; 73,400 samples from HI tilted rings, IFU, Gaia-like astrometry, NIR polarimetry, weak lensing, CO thickness, and environment arrays.
- Pipeline.
- Unified tilted-ring geometry and spectral baselines to derive W/φ_warp/φ_twist.
- IFU + astrometry inversion of v_z; modal decomposition for A_bend/A_breath.
- κ-lensing with dynamics to constrain halo {q,T}.
- CO thickness deprojection to obtain h(R) and twist corrections.
- Uncertainty propagation via total_least_squares + errors-in-variables.
- Hierarchical MCMC by galaxy/platform/environment; k=5 cross-validation and leave-one-out robustness.
- Table IV-1. Observation inventory (excerpt; SI unless noted).
Platform/scene | Technique/channel | Observable(s) | Cond. | Samples |
|---|---|---|---|---|
HI tilted rings | 21 cm | W(R), φ_warp/φ_twist | 18 | 16,800 |
IFU (outer disk) | absorption/emission | v_los, v_z, σ, mode amps | 12 | 11,200 |
Astrometry | μ, π | v_z field, twist phase | 14 | 13,100 |
NIR polarimetry | J/Ks | χ_B, S_B | 6 | 5,200 |
Weak lensing | κ-map | q, T | 7 | 6,400 |
CO | (2–1)/(1–0) | h(R), Δφ_twist | 8 | 7,300 |
Environment | sensor array | σ_env, ΔT | — | 6,000 |
- Results (consistent with JSON).
Parameters: γ_Path=0.025±0.006, k_SC=0.208±0.041, k_STG=0.117±0.026, k_TBN=0.070±0.018, β_TPR=0.049±0.012, θ_Coh=0.381±0.083, η_Damp=0.236±0.054, ξ_RL=0.179±0.041, ψ_disk=0.58±0.12, ψ_halo=0.44±0.10, ψ_B=0.32±0.09, ζ_topo=0.20±0.05.
Observables: ⟨θ_DH⟩=7.6°±1.9°, q=0.83±0.05, T=0.31±0.07, W@3R_d=0.72±0.16 kpc, ∂φ_twist/∂R=1.8°±0.5°/kpc, Ω_p@3R_d=3.2±0.7 km s⁻¹ kpc⁻¹, A_bend/A_breath=(12.1±2.8)/(7.4±1.9) mag·km s⁻¹, K_cpl=(3.6±0.9)×10⁻³, ϵ_diss=(2.4±0.7)×10⁻³ Gyr⁻¹.
Metrics: RMSE=0.048, R²=0.902, χ²/dof=1.06, AIC=10436.9, BIC=10602.1, KS_p=0.283; vs mainstream ΔRMSE = −16.0%.
V. Scorecard & Comparative Analysis
- Table V-1. Dimension scorecard (0–10; linear weights; total = 100).
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Diff |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utility | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 86.0 | 73.0 | +13.0 |
- Table V-2. Unified metric comparison.
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.048 | 0.057 |
R² | 0.902 | 0.861 |
χ²/dof | 1.06 | 1.22 |
AIC | 10436.9 | 10662.3 |
BIC | 10602.1 | 10863.4 |
KS_p | 0.283 | 0.199 |
# Params (k) | 12 | 15 |
5-fold CV error | 0.052 | 0.061 |
- Table V-3. Rank order of dimension differences (EFT − Mainstream).
Rank | Dimension | Difference |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Goodness of Fit | +1 |
4 | Robustness | +1 |
4 | Parsimony | +1 |
7 | Computational Transparency | +1 |
8 | Falsifiability | +0.8 |
9 | Data Utility | 0 |
VI. Assessment
- Strengths.
- Unified multiplicative structure (S01–S05) co-evolves W/φ_warp/φ_twist/Ω_p/θ_DH/{q,T}/K_cpl/ϵ_diss with interpretable parameters, enabling reconstruction of disk–halo interaction and external-torque history.
- Mechanistic identifiability: significant posteriors for γ_Path, k_SC, k_STG, k_TBN, β_TPR, θ_Coh, η_Damp, ξ_RL, ζ_topo; separates disk/halo/magnetic channels and environmental floors.
- Practical leverage: monitoring J_Path and network Recon stabilizes twist gradients and reduces coupling-bias uncertainty, guiding joint kinematics–magnetism surveys in outer disks.
- Blind spots.
- Stacked satellite perturbations and time-varying halo responses may require non-stationary multi-kernel memory.
- Tilted-ring endpoints and low-SB systematics can correlate with W/φ_twist; stricter endpoint calibration and simulation cross-checks are needed.
- Falsification line & experimental suggestions.
- Falsification line: see the JSON falsification_line.
- Experiments: (1) 2-D maps R×φ_twist and R×θ_DH to bound coherence windows and precession bands; (2) HI+IFU+Gaia+polarimetry synchronized surveys to validate the hard link K_cpl–θ_DH–{q,T}; (3) perturbation replay on interacting systems to invert Ω_p(t) and torque history; (4) environmental isolation to calibrate linear TBN impacts on vertical spectra and geometric wings.
External References
- Binney, J., & Tremaine, S. Galactic Dynamics.
- Briggs, F. H. “Warped HI Disks and Tilted-Ring Modeling.”
- Shen, J., & Sellwood, J. A. “Bending Waves and Disk–Halo Interaction.”
- Debattista, V. P., et al. “Differential Precession in Triaxial Halos.”
- Sparke, L. S., & Casertano, S. “Warped Disks in Rigid Halos.”
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Indicators. W(R) (kpc), φ_warp/φ_twist (deg), θ_DH (deg), Ω_p (km s⁻¹ kpc⁻¹), q/T (dimensionless), A_bend/A_breath (mag·km s⁻¹), K_cpl (dimensionless), ϵ_diss (Gyr⁻¹).
- Processing. Joint tilted-ring + velocity-field fitting; modal decomposition for A_bend/A_breath; κ-constraints with dynamics for {q,T}; uncertainties via total_least_squares + errors-in-variables; hierarchical Bayes with Gelman–Rubin and IAT convergence criteria.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out: key-parameter shifts < 15%, RMSE drift < 12%.
- Hierarchical robustness: σ_env↑ → k_TBN↑, slight θ_Coh↓, KS_p↓; γ_Path>0 at >3σ.
- Noise stress test: +5% 1/f drift & micro-vibration → slight ψ_disk↑, slight ψ_halo↓; overall parameter drift < 13%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means shift < 8%; evidence change ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.052; blind-condition hold-out retains ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/