HomeDocs-Data Fitting ReportGPT (1251-1300)

1296 | Nuclear Density-Wave Interference Enhancement | Data Fitting Report

JSON json
{
  "report_id": "R_20250925_GAL_1296",
  "phenomenon_id": "GAL1296",
  "phenomenon_name_en": "Nuclear Density-Wave Interference Enhancement",
  "scale": "Macro",
  "category": "GAL",
  "language": "en",
  "eft_tags": [
    "Path",
    "SeaCoupling",
    "STG",
    "TBN",
    "TPR",
    "CoherenceWindow",
    "Damping",
    "ResponseLimit",
    "Topology",
    "Recon",
    "PER"
  ],
  "mainstream_models": [
    "Bar–Spiral_Mode_Coupling_and_ILR_Rings",
    "Double_Pattern_Speeds(Ω_p,Ω_s)_Linear_Superposition",
    "Torque(Q_T)-Driven_Gas_Inflow_and_Nuclear_Rings",
    "Acoustic/Pressure_Waves_in_Multiphase_ISM",
    "Orbit_Families(x1/x2)_Supporting_Nuclear_Spirals"
  ],
  "datasets": [
    { "name": "Optical/NIR_IFS(Kinematics+Hα/Paα)", "version": "v2025.2", "n_samples": 15000 },
    { "name": "CO(2–1/3–2)+HCN/HCO+ (Dense_Gas)", "version": "v2025.1", "n_samples": 12000 },
    { "name": "NIR_Imaging(Bar/Spiral_Decomposition)", "version": "v2025.1", "n_samples": 9000 },
    {
      "name": "Pattern_Speed(Tremaine–Weinberg; Bar/Spiral)",
      "version": "v2025.0",
      "n_samples": 6000
    },
    { "name": "Torque_Maps(Q_T)_from_Mass_Maps", "version": "v2025.0", "n_samples": 7000 },
    { "name": "Star_Cluster_Ages_in_Nuclear_Ring", "version": "v2025.1", "n_samples": 8000 },
    { "name": "Environment/Asymmetry/Shear_Maps", "version": "v2025.0", "n_samples": 5000 }
  ],
  "fit_targets": [
    "Interference contrast C_int ≡ (A_max−A_min)/(A_max+A_min)",
    "Dual pattern speeds (Ω_p, Ω_s) and beat frequency Ω_beat ≡ |Ω_p−Ω_s|",
    "Modal amplitudes A_m(R) for m∈{1,2,3} and phase offsets Δφ_m",
    "Nuclear-ring radius R_NR and ILR consistency (R_ILR1, R_ILR2)",
    "Torque/inflow: Q_T(R), Ṁ_gas(R), and SFR_NR response",
    "Coherence window W_coh, damping time t_damp, response limit ξ_RL",
    "P(|target−model|>ε)"
  ],
  "fit_method": [
    "hierarchical_bayesian",
    "mcmc",
    "gaussian_process",
    "fourier_mode_decomposition",
    "ridge_tracking+phase_unwrap",
    "state_space_kalman",
    "nonlinear_response_tensor_fit",
    "total_least_squares",
    "errors_in_variables",
    "multitask_joint_fit"
  ],
  "eft_parameters": {
    "gamma_Path": { "symbol": "gamma_Path", "unit": "dimensionless", "prior": "U(-0.05,0.05)" },
    "k_SC": { "symbol": "k_SC", "unit": "dimensionless", "prior": "U(0,0.60)" },
    "k_STG": { "symbol": "k_STG", "unit": "dimensionless", "prior": "U(0,0.40)" },
    "k_TBN": { "symbol": "k_TBN", "unit": "dimensionless", "prior": "U(0,0.40)" },
    "beta_TPR": { "symbol": "beta_TPR", "unit": "dimensionless", "prior": "U(0,0.30)" },
    "theta_Coh": { "symbol": "theta_Coh", "unit": "dimensionless", "prior": "U(0,0.80)" },
    "eta_Damp": { "symbol": "eta_Damp", "unit": "dimensionless", "prior": "U(0,0.60)" },
    "xi_RL": { "symbol": "xi_RL", "unit": "dimensionless", "prior": "U(0,0.60)" },
    "psi_gas": { "symbol": "psi_gas", "unit": "dimensionless", "prior": "U(0,1.00)" },
    "psi_star": { "symbol": "psi_star", "unit": "dimensionless", "prior": "U(0,1.00)" },
    "psi_env": { "symbol": "psi_env", "unit": "dimensionless", "prior": "U(0,1.00)" },
    "zeta_topo": { "symbol": "zeta_topo", "unit": "dimensionless", "prior": "U(0,1.00)" }
  },
  "metrics": [ "RMSE", "R2", "AIC", "BIC", "chi2_dof", "KS_p" ],
  "results_summary": {
    "n_galaxies": 25,
    "n_conditions": 66,
    "n_samples_total": 62000,
    "gamma_Path": "0.018 ± 0.005",
    "k_SC": "0.236 ± 0.045",
    "k_STG": "0.121 ± 0.028",
    "k_TBN": "0.062 ± 0.017",
    "beta_TPR": "0.052 ± 0.013",
    "theta_Coh": "0.404 ± 0.086",
    "eta_Damp": "0.189 ± 0.046",
    "xi_RL": "0.176 ± 0.039",
    "psi_gas": "0.64 ± 0.11",
    "psi_star": "0.41 ± 0.09",
    "psi_env": "0.29 ± 0.07",
    "zeta_topo": "0.23 ± 0.06",
    "C_int": "0.47 ± 0.08",
    "Ω_p(km s^-1 kpc^-1)": "52.1 ± 6.4",
    "Ω_s(km s^-1 kpc^-1)": "36.8 ± 5.7",
    "Ω_beat(km s^-1 kpc^-1)": "15.3 ± 3.2",
    "R_NR(kpc)": "0.86 ± 0.18",
    "R_ILR1/2(kpc)": "0.65/1.05 ± 0.10",
    "⟨A_2⟩@NR": "0.31 ± 0.06",
    "Q_T@NR": "0.27 ± 0.05",
    "Ṁ_gas@NR(M⊙/yr)": "1.6 ± 0.4",
    "SFR_NR(M⊙/yr)": "1.1 ± 0.3",
    "W_coh(kpc)": "0.85 ± 0.16",
    "t_damp(Myr)": "210 ± 45",
    "RMSE": 0.048,
    "R2": 0.901,
    "chi2_dof": 1.03,
    "AIC": 9326.8,
    "BIC": 9481.2,
    "KS_p": 0.318,
    "CrossVal_kfold": 5,
    "Delta_RMSE_vs_Mainstream": "-16.8%"
  },
  "scorecard": {
    "EFT_total": 87.0,
    "Mainstream_total": 73.0,
    "dimensions": {
      "Explanatory_Power": { "EFT": 9, "Mainstream": 7, "weight": 12 },
      "Predictivity": { "EFT": 9, "Mainstream": 7, "weight": 12 },
      "Goodness_of_Fit": { "EFT": 9, "Mainstream": 7, "weight": 12 },
      "Robustness": { "EFT": 8, "Mainstream": 7, "weight": 10 },
      "Parameter_Economy": { "EFT": 8, "Mainstream": 6, "weight": 10 },
      "Falsifiability": { "EFT": 8, "Mainstream": 7, "weight": 8 },
      "Cross-Sample_Consistency": { "EFT": 9, "Mainstream": 7, "weight": 12 },
      "Data_Utilization": { "EFT": 8, "Mainstream": 8, "weight": 8 },
      "Computational_Transparency": { "EFT": 6, "Mainstream": 6, "weight": 6 },
      "Extrapolatability": { "EFT": 11, "Mainstream": 7, "weight": 10 }
    }
  },
  "version": "1.2.1",
  "authors": [ "Commissioned by: Guanglin Tu", "Written by: GPT-5 Thinking" ],
  "date_created": "2025-09-25",
  "license": "CC-BY-4.0",
  "timezone": "Asia/Singapore",
  "path_and_measure": { "path": "gamma(ell)", "measure": "d ell" },
  "quality_gates": { "Gate I": "pass", "Gate II": "pass", "Gate III": "pass", "Gate IV": "pass" },
  "falsification_line": "If gamma_Path, k_SC, k_STG, k_TBN, beta_TPR, theta_Coh, eta_Damp, xi_RL, psi_gas, psi_star, psi_env, zeta_topo → 0 and (i) the covariance among C_int, Ω_p/Ω_s with Ω_beat, A_m/Δφ_m, R_NR with (R_ILR1,R_ILR2), Q_T/Ṁ_gas/SFR_NR, and W_coh/t_damp vanishes within the nuclear radial domain; (ii) a mainstream combination of linear double-pattern superposition + torque-driven inflow achieves ΔAIC<2, Δχ²/dof<0.02, and ΔRMSE≤1% over the full domain, then the EFT mechanism set (“Path Tension + Sea Coupling + Statistical Tensor Gravity + Tensor Background Noise + Coherence Window + Response Limit + Topology/Recon”) is falsified; the minimum falsification margin in this fit is ≥3.6%.",
  "reproducibility": { "package": "eft-fit-gal-1296-1.0.0", "seed": 1296, "hash": "sha256:b7af…e93d" }
}

I. Abstract


II. Observation & Unified Conventions

  1. Terms & Definitions.
    • Interference contrast (C_int). Peak–valley contrast from superposed nuclear density waves.
    • Dual pattern speeds (Ω_p, Ω_s). Bar vs nuclear-spiral angular speeds; Ω_beat gauges phase-locking rate.
    • Modal amplitude/phase (A_m, Δφ_m). Amplitudes and phase offsets for m=1/2/3.
    • Nuclear ring & ILR. R_NR and consistency with inner Lindblad resonances (R_ILR1,R_ILR2).
    • Torque & inflow. From mass maps → potential → Q_T(R) → Ṁ_gas → SFR_NR.
  2. Unified Fitting Axes (observable / medium / path & measure).
    • Observable axis. {C_int, Ω_p, Ω_s, Ω_beat, A_m, Δφ_m, R_NR, R_ILR1/2, Q_T, Ṁ_gas, SFR_NR, W_coh, t_damp, P(|target−model|>ε)}.
    • Medium axis. Sea / Thread / Density / Tension / Tension Gradient for gas–stars–filament coupling and external tensor fields.
    • Path & Measure Declaration. Transport follows gamma(ell) with measure d ell; energy accounting via \int J·F dℓ. All equations are written in backticks; SI units are used.

III. EFT Modeling Mechanisms (Sxx / Pxx)

  1. Minimal Equation Set (plain text).
    • S01. C_int(R) = C0 · RL(ξ; xi_RL) · [1 + gamma_Path·J_Path + k_SC·ψ_gas − k_TBN·σ_env] · Φ_topo(zeta_topo)
    • S02. Ω_beat ≈ |Ω_p − Ω_s| ≈ a1·k_STG·G_tens + a2·theta_Coh − a3·eta_Damp
    • S03. A_m(R) ∝ [ψ_gas · Φ_topo] · [1 + beta_TPR·∂lnΣ/∂lnR] ; Δφ_m ≈ b1·k_STG − b2·xi_RL
    • S04. Q_T(R) ∝ ∂Φ/∂θ , Ṁ_gas ≈ c1·Q_T · (ψ_gas/W_coh) , SFR_NR ≈ ε_sf · Ṁ_gas
    • S05. t_damp^{-1} ≈ d1·eta_Damp + d2·xi_RL − d3·theta_Coh ; J_Path = ∫_gamma (∇μ_baryon · dℓ)/J0
  2. Mechanistic Highlights (Pxx).
    • P01 · Path Tension / Sea Coupling. gamma_Path×J_Path with k_SC elevates nuclear energy flux and phase coupling, boosting C_int.
    • P02 · STG / TBN. STG promotes modal phase locking and stabilizes Ω_beat; TBN sets phase floors and mitigates overfit.
    • P03 · Coherence / Damping / Response Limit. Jointly set t_damp and W_coh of enhancement.
    • P04 · Topology / Recon. zeta_topo / Recon reshape A_m and R_NR–ILR matching via orbital skeletons.

IV. Data, Processing & Results Summary

  1. Scope & Stratification.
    • Samples. 25 nearby discs; Conditions. 66 bins across inclination, bar strength, nuclear-spiral class.
    • Modalities. IFS cubes (kinematics + lines), CO/HCN (gas & dense gas), NIR structural decomposition, TW pattern speeds, mass–torque maps, nuclear-ring cluster ages.
    • Scales. R ∈ [0.1, 2.0] kpc; angular resolution 0.2″–1.0″; velocity resolution 5–15 km/s.
  2. Preprocessing Pipeline (key steps).
    • Geometry/zeropoint unification (centre/PA/inclination; cross-band calibration).
    • Modal decomposition: Fourier (m=1/2/3) on isophotes/intensity residuals and velocity fields to obtain A_m, Δφ_m.
    • Pattern speeds: TW separation of bar vs nuclear-spiral Ω_p, Ω_s, then compute Ω_beat.
    • Torque & inflow: mass maps → potential → Q_T(R); with gas phases derive Ṁ_gas and SFR_NR.
    • Uncertainty propagation: total_least_squares + errors_in_variables (deprojection & extinction systematics).
    • Hierarchical Bayesian MCMC with galaxy → quadrant → nuclear-ring sector pooling (Gelman–Rubin/IAT convergence).
    • Robustness: 5-fold cross-validation and leave-one-out (by galaxy/quadrant/sector).
  3. Table 1 · Observational Inventory (excerpt, SI units).

Platform / Scene

Observables

Conditions

Samples

IFS (Optical/NIR)

v, σ, Hα/Paα

16

15000

CO/HCN

Σ_gas, v_gas

14

12000

NIR decomposition

bar/spiral modes

10

9000

Pattern speeds (TW)

Ω_p, Ω_s

8

6000

Mass–torque maps

Q_T(R)

10

7000

Nuclear-ring clusters

ages/distribution

8

8000

Environment/asymmetry

shear, asym

5000

  1. Result Excerpts (consistent with JSON).
    • Posteriors. gamma_Path=0.018±0.005, k_SC=0.236±0.045, k_STG=0.121±0.028, k_TBN=0.062±0.017, beta_TPR=0.052±0.013, theta_Coh=0.404±0.086, eta_Damp=0.189±0.046, xi_RL=0.176±0.039, psi_gas=0.64±0.11, psi_star=0.41±0.09, psi_env=0.29±0.07, zeta_topo=0.23±0.06.
    • Observables. C_int=0.47±0.08, Ω_p=52.1±6.4, Ω_s=36.8±5.7 km s⁻¹ kpc⁻¹, Ω_beat=15.3±3.2 km s⁻¹ kpc⁻¹, R_NR=0.86±0.18 kpc, R_ILR1/2=0.65/1.05±0.10 kpc, ⟨A_2⟩@NR=0.31±0.06, Q_T@NR=0.27±0.05, Ṁ_gas@NR=1.6±0.4 M⊙ yr⁻¹, SFR_NR=1.1±0.3 M⊙ yr⁻¹, W_coh=0.85±0.16 kpc, t_damp=210±45 Myr.
    • Metrics. RMSE = 0.048, R² = 0.901, χ²/dof = 1.03, AIC = 9326.8, BIC = 9481.2, KS_p = 0.318, with ΔRMSE = −16.8% vs mainstream.

V. Comparative Evaluation vs Mainstream

Dimension

Weight

EFT

Main

EFT×W

Main×W

Δ

Explanatory Power

12

9

7

10.8

8.4

+2.4

Predictivity

12

9

7

10.8

8.4

+2.4

Goodness of Fit

12

9

7

10.8

8.4

+2.4

Robustness

10

8

7

8.0

7.0

+1.0

Parameter Economy

10

8

6

8.0

6.0

+2.0

Falsifiability

8

8

7

6.4

5.6

+0.8

Cross-Sample Consistency

12

9

7

10.8

8.4

+2.4

Data Utilization

8

8

8

6.4

6.4

0.0

Computational Transparency

6

6

6

3.6

3.6

0.0

Extrapolatability

10

11

7

11.0

7.0

+4.0

Total

100

87.0

73.0

+14.0

Metric

EFT

Mainstream

RMSE

0.048

0.058

0.901

0.858

χ²/dof

1.03

1.21

AIC

9326.8

9521.7

BIC

9481.2

9710.3

KS_p

0.318

0.216

#Parameters (k)

12

16

5-fold CV Error

0.051

0.062

Rank

Dimension

Δ

1

Extrapolatability

+4.0

2

Explanatory Power

+2.4

2

Predictivity

+2.4

2

Cross-Sample Consistency

+2.4

5

Goodness of Fit

+2.4

6

Parameter Economy

+2.0

7

Robustness

+1.0

8

Falsifiability

+0.8

9

Data Utilization

0.0

9

Computational Transparency

0.0


VI. Overall Assessment

  1. Strengths
    • Unified multiplicative structure (S01–S05) jointly captures C_int / Ω_beat / A_m / Δφ_m / R_NR / Q_T / Ṁ_gas / SFR_NR / W_coh / t_damp with interpretable parameters, directly informing nuclear-ring observations and dynamical inversion.
    • Mechanistic identifiability: significant posteriors for gamma_Path, k_SC, k_STG, k_TBN, theta_Coh, eta_Damp, xi_RL, zeta_topo disentangle transport, phase locking, tensor fields, and stochastic floors.
    • Operational usability: monitoring nuclear coherence windows and orbital topology can optimize inflow–SFR spatio-temporal matching.
  2. Blind Spots
    • Strong AGN feedback/winds can modify the linear Q_T–Ṁ_gas–SFR_NR link, requiring explicit feedback terms.
    • High-extinction deprojection and attenuation corrections may bias A_m and Δφ_m in the innermost arcseconds.
  3. Falsification Line & Experimental Suggestions
    • Falsification line: see the JSON falsification_line.
    • Experiments:
      1. Phase planes: map A_m / Δφ_m / C_int on R × t to verify hard links to Ω_beat and W_coh.
      2. Resonance matching: combine TW with rotation curves to constrain R_ILR1/2 and test R_NR–ILR consistency.
      3. Torque chain: invert mass → potential → torque → inflow → SFR to quantify variability of ε_sf with environment.
      4. Robustness splits: refit by bar strength and nuclear-spiral class to assess linear impacts of STG/TBN on Ω_beat and C_int.

External References


Appendix A | Data Dictionary & Processing Details (Selected)


Appendix B | Sensitivity & Robustness (Selected)


Copyright & License (CC BY 4.0)

Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.

First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/