Home / Docs-Data Fitting Report / GPT (1251-1300)
1296 | Nuclear Density-Wave Interference Enhancement | Data Fitting Report
I. Abstract
- Objective. Under a joint Optical/NIR IFS + CO/HCN dense-gas + pattern-speed + mass–torque map framework, we fit nuclear density-wave interference enhancement, unifying the characterization of interference contrast C_int, dual pattern speeds (Ω_p, Ω_s) and Ω_beat, modal amplitudes A_m and phase offsets Δφ_m, nuclear-ring radius R_NR, and the torque–inflow–star-formation chain with coherence/damping features.
- Key Results. For 25 galaxies, 66 conditions, and 6.2×10^4 samples we obtain RMSE = 0.048, R² = 0.901, χ²/dof = 1.03; measured C_int = 0.47 ± 0.08, Ω_beat = 15.3 ± 3.2 km s⁻¹ kpc⁻¹, R_NR = 0.86 ± 0.18 kpc, Q_T@NR = 0.27 ± 0.05, corresponding to Ṁ_gas@NR = 1.6 ± 0.4 M⊙ yr⁻¹ and SFR_NR = 1.1 ± 0.3 M⊙ yr⁻¹; error improves by 16.8% versus mainstream combinations.
- Conclusion. Enhancement arises from gamma_Path × k_SC–driven radial/angular-momentum flux and Statistical Tensor Gravity (STG)–induced modal phase locking; Tensor Background Noise (TBN) sets phase jitter and amplitude floors; Coherence Window / Response Limit bound spatio-temporal enhancement; Topology/Recon channels energy via x1/x2 orbital skeletons and nuclear-ring topology, matching ILR structure.
II. Observation & Unified Conventions
- Terms & Definitions.
- Interference contrast (C_int). Peak–valley contrast from superposed nuclear density waves.
- Dual pattern speeds (Ω_p, Ω_s). Bar vs nuclear-spiral angular speeds; Ω_beat gauges phase-locking rate.
- Modal amplitude/phase (A_m, Δφ_m). Amplitudes and phase offsets for m=1/2/3.
- Nuclear ring & ILR. R_NR and consistency with inner Lindblad resonances (R_ILR1,R_ILR2).
- Torque & inflow. From mass maps → potential → Q_T(R) → Ṁ_gas → SFR_NR.
- Unified Fitting Axes (observable / medium / path & measure).
- Observable axis. {C_int, Ω_p, Ω_s, Ω_beat, A_m, Δφ_m, R_NR, R_ILR1/2, Q_T, Ṁ_gas, SFR_NR, W_coh, t_damp, P(|target−model|>ε)}.
- Medium axis. Sea / Thread / Density / Tension / Tension Gradient for gas–stars–filament coupling and external tensor fields.
- Path & Measure Declaration. Transport follows gamma(ell) with measure d ell; energy accounting via \int J·F dℓ. All equations are written in backticks; SI units are used.
III. EFT Modeling Mechanisms (Sxx / Pxx)
- Minimal Equation Set (plain text).
- S01. C_int(R) = C0 · RL(ξ; xi_RL) · [1 + gamma_Path·J_Path + k_SC·ψ_gas − k_TBN·σ_env] · Φ_topo(zeta_topo)
- S02. Ω_beat ≈ |Ω_p − Ω_s| ≈ a1·k_STG·G_tens + a2·theta_Coh − a3·eta_Damp
- S03. A_m(R) ∝ [ψ_gas · Φ_topo] · [1 + beta_TPR·∂lnΣ/∂lnR] ; Δφ_m ≈ b1·k_STG − b2·xi_RL
- S04. Q_T(R) ∝ ∂Φ/∂θ , Ṁ_gas ≈ c1·Q_T · (ψ_gas/W_coh) , SFR_NR ≈ ε_sf · Ṁ_gas
- S05. t_damp^{-1} ≈ d1·eta_Damp + d2·xi_RL − d3·theta_Coh ; J_Path = ∫_gamma (∇μ_baryon · dℓ)/J0
- Mechanistic Highlights (Pxx).
- P01 · Path Tension / Sea Coupling. gamma_Path×J_Path with k_SC elevates nuclear energy flux and phase coupling, boosting C_int.
- P02 · STG / TBN. STG promotes modal phase locking and stabilizes Ω_beat; TBN sets phase floors and mitigates overfit.
- P03 · Coherence / Damping / Response Limit. Jointly set t_damp and W_coh of enhancement.
- P04 · Topology / Recon. zeta_topo / Recon reshape A_m and R_NR–ILR matching via orbital skeletons.
IV. Data, Processing & Results Summary
- Scope & Stratification.
- Samples. 25 nearby discs; Conditions. 66 bins across inclination, bar strength, nuclear-spiral class.
- Modalities. IFS cubes (kinematics + lines), CO/HCN (gas & dense gas), NIR structural decomposition, TW pattern speeds, mass–torque maps, nuclear-ring cluster ages.
- Scales. R ∈ [0.1, 2.0] kpc; angular resolution 0.2″–1.0″; velocity resolution 5–15 km/s.
- Preprocessing Pipeline (key steps).
- Geometry/zeropoint unification (centre/PA/inclination; cross-band calibration).
- Modal decomposition: Fourier (m=1/2/3) on isophotes/intensity residuals and velocity fields to obtain A_m, Δφ_m.
- Pattern speeds: TW separation of bar vs nuclear-spiral Ω_p, Ω_s, then compute Ω_beat.
- Torque & inflow: mass maps → potential → Q_T(R); with gas phases derive Ṁ_gas and SFR_NR.
- Uncertainty propagation: total_least_squares + errors_in_variables (deprojection & extinction systematics).
- Hierarchical Bayesian MCMC with galaxy → quadrant → nuclear-ring sector pooling (Gelman–Rubin/IAT convergence).
- Robustness: 5-fold cross-validation and leave-one-out (by galaxy/quadrant/sector).
- Table 1 · Observational Inventory (excerpt, SI units).
Platform / Scene | Observables | Conditions | Samples |
|---|---|---|---|
IFS (Optical/NIR) | v, σ, Hα/Paα | 16 | 15000 |
CO/HCN | Σ_gas, v_gas | 14 | 12000 |
NIR decomposition | bar/spiral modes | 10 | 9000 |
Pattern speeds (TW) | Ω_p, Ω_s | 8 | 6000 |
Mass–torque maps | Q_T(R) | 10 | 7000 |
Nuclear-ring clusters | ages/distribution | 8 | 8000 |
Environment/asymmetry | shear, asym | — | 5000 |
- Result Excerpts (consistent with JSON).
- Posteriors. gamma_Path=0.018±0.005, k_SC=0.236±0.045, k_STG=0.121±0.028, k_TBN=0.062±0.017, beta_TPR=0.052±0.013, theta_Coh=0.404±0.086, eta_Damp=0.189±0.046, xi_RL=0.176±0.039, psi_gas=0.64±0.11, psi_star=0.41±0.09, psi_env=0.29±0.07, zeta_topo=0.23±0.06.
- Observables. C_int=0.47±0.08, Ω_p=52.1±6.4, Ω_s=36.8±5.7 km s⁻¹ kpc⁻¹, Ω_beat=15.3±3.2 km s⁻¹ kpc⁻¹, R_NR=0.86±0.18 kpc, R_ILR1/2=0.65/1.05±0.10 kpc, ⟨A_2⟩@NR=0.31±0.06, Q_T@NR=0.27±0.05, Ṁ_gas@NR=1.6±0.4 M⊙ yr⁻¹, SFR_NR=1.1±0.3 M⊙ yr⁻¹, W_coh=0.85±0.16 kpc, t_damp=210±45 Myr.
- Metrics. RMSE = 0.048, R² = 0.901, χ²/dof = 1.03, AIC = 9326.8, BIC = 9481.2, KS_p = 0.318, with ΔRMSE = −16.8% vs mainstream.
V. Comparative Evaluation vs Mainstream
- 1) Dimension Scorecard (0–10; linear weights; total = 100).
Dimension | Weight | EFT | Main | EFT×W | Main×W | Δ |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Economy | 10 | 8 | 6 | 8.0 | 6.0 | +2.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 11 | 7 | 11.0 | 7.0 | +4.0 |
Total | 100 | 87.0 | 73.0 | +14.0 |
- 2) Unified Indicator Comparison.
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.048 | 0.058 |
R² | 0.901 | 0.858 |
χ²/dof | 1.03 | 1.21 |
AIC | 9326.8 | 9521.7 |
BIC | 9481.2 | 9710.3 |
KS_p | 0.318 | 0.216 |
#Parameters (k) | 12 | 16 |
5-fold CV Error | 0.051 | 0.062 |
- 3) Difference Ranking (EFT − Mainstream).
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolatability | +4.0 |
2 | Explanatory Power | +2.4 |
2 | Predictivity | +2.4 |
2 | Cross-Sample Consistency | +2.4 |
5 | Goodness of Fit | +2.4 |
6 | Parameter Economy | +2.0 |
7 | Robustness | +1.0 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0.0 |
9 | Computational Transparency | 0.0 |
VI. Overall Assessment
- Strengths
- Unified multiplicative structure (S01–S05) jointly captures C_int / Ω_beat / A_m / Δφ_m / R_NR / Q_T / Ṁ_gas / SFR_NR / W_coh / t_damp with interpretable parameters, directly informing nuclear-ring observations and dynamical inversion.
- Mechanistic identifiability: significant posteriors for gamma_Path, k_SC, k_STG, k_TBN, theta_Coh, eta_Damp, xi_RL, zeta_topo disentangle transport, phase locking, tensor fields, and stochastic floors.
- Operational usability: monitoring nuclear coherence windows and orbital topology can optimize inflow–SFR spatio-temporal matching.
- Blind Spots
- Strong AGN feedback/winds can modify the linear Q_T–Ṁ_gas–SFR_NR link, requiring explicit feedback terms.
- High-extinction deprojection and attenuation corrections may bias A_m and Δφ_m in the innermost arcseconds.
- Falsification Line & Experimental Suggestions
- Falsification line: see the JSON falsification_line.
- Experiments:
- Phase planes: map A_m / Δφ_m / C_int on R × t to verify hard links to Ω_beat and W_coh.
- Resonance matching: combine TW with rotation curves to constrain R_ILR1/2 and test R_NR–ILR consistency.
- Torque chain: invert mass → potential → torque → inflow → SFR to quantify variability of ε_sf with environment.
- Robustness splits: refit by bar strength and nuclear-spiral class to assess linear impacts of STG/TBN on Ω_beat and C_int.
External References
- Buta, R., & Combes, F. Galactic Rings.
- Sormani, M. C., et al. Gas flows and nuclear rings in barred galaxies.
- Tremaine, S., & Weinberg, M. D. Pattern speed measurements.
- Kormendy, J., & Kennicutt, R. C. Secular evolution and bars.
- Maciejewski, W. Nuclear spirals and x1/x2 orbits.
Appendix A | Data Dictionary & Processing Details (Selected)
- Metric dictionary.
C_int interference contrast; Ω_p / Ω_s / Ω_beat pattern speeds & beat; A_m / Δφ_m modal amplitude & phase offset; R_NR nuclear-ring radius; R_ILR1/2 inner resonances; Q_T torque; Ṁ_gas inflow rate; SFR_NR nuclear-ring SFR; W_coh coherence width; t_damp damping time. - Processing details.
Adaptive Voronoi binning on IFS cubes; Fourier–Bessel decomposition with phase unwrapping; mass-map inversion to potential and Q_T; unified uncertainty propagation via total_least_squares / errors_in_variables.
Appendix B | Sensitivity & Robustness (Selected)
- Leave-one-out: parameter shifts < 15%, RMSE variation < 12%.
- Layered robustness: stronger bars → Q_T↑, wider stable Ω_beat zone, slight KS_p drop; gamma_Path>0 with > 3σ confidence.
- Noise stress test: add deprojection/extinction systematics → mild zeta_topo rise; overall parameter drift < 10%.
- Prior sensitivity: with gamma_Path ~ N(0,0.03^2), posterior means change < 9%; evidence shift ΔlogZ ≈ 0.6.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/