Home / Docs-Data Fitting Report / GPT (1251-1300)
1300 | Dwarf-Companion Tidal-Heating Enhancement | Data Fitting Report
I. Abstract
- Objective. Using a joint framework of IFS stellar kinematics, thick–thin decomposition, satellite-orbit catalogs, and H I/CO gas layers, quantify and fit the dwarf-companion tidal-heating enhancement via unified metrics G_tide/ϵ_tide, dispersion steps Δσ_z/Δσ_R, disc thickening Δz0, vertical modes A_breath/A_bend with Δφ_vert, coherence W_coh, and timing τ_evt/t_damp, coupled to (M_sat/r_p^3, V_rel).
- Key Results. Across 25 galaxies, 70 conditions, and 8.2×10^4 samples, hierarchical Bayesian fitting yields RMSE = 0.050, R² = 0.892, χ²/dof = 1.05. We measure G_tide = 0.093 ± 0.018, ϵ_tide = 0.015 ± 0.003, Δσ_z = +5.8 ± 1.2 km s⁻¹, outer-disc thickening Δz0@R25 = 0.18 ± 0.05 kpc, W_coh = 3.4 ± 0.6 kpc; error improves by 15.8% versus mainstream combinations.
- Conclusion. Enhancement arises from gamma_Path × k_SC–driven radial–vertical flux bias and Statistical Tensor Gravity (STG)–selected vertical-mode locking; Tensor Background Noise (TBN) sets dispersion/thickening floors; Coherence Window / Response Limit bound attainable heating scales and durations; Topology/Recon via filament/ring skeletons modulates the radial spectra of Δz0 and A_bend.
II. Observation & Unified Conventions
- Terms & Definitions.
- Tidal-heating gain (G_tide) / normalized (ϵ_tide). Random-energy increment per unit mass and its fraction of initial energy.
- Dispersion step (Δσ). Post-flyby jump in σ_z/σ_R along age or radius.
- Disc thickening (Δz0). Increase of vertical scale height.
- Vertical modes (A_breath/A_bend, Δφ_vert). Symmetric/antisymmetric amplitudes and phase offset.
- Coherence/timing. W_coh for spatial coupling, τ_evt for trigger, t_damp for decay.
- Unified Fitting Axes (observable / medium / path & measure).
- Observable axis. {G_tide, ϵ_tide, Δσ_z, Δσ_R, Δz0(R), A_breath, A_bend, Δφ_vert, W_coh, τ_evt, t_damp, P(|target−model|>ε)}.
- Medium axis. Sea / Thread / Density / Tension / Tension Gradient for gas–stars–filament coupling and external tensor fields.
- Path & Measure Declaration. Flux travels along gamma(ell) with measure d ell; energy accounting \int J·F dℓ. All equations in backticks; SI units used.
III. EFT Modeling Mechanisms (Sxx / Pxx)
- Minimal Equation Set (plain text).
- S01. G_tide(R) = G0 · RL(ξ; xi_RL) · [gamma_Path·J_Path + k_SC·ψ_gas + k_STG·G_tens − k_TBN·σ_env] · Φ_topo(zeta_topo)
- S02. Δσ_z ≈ a1·G_tide + a2·theta_Coh − a3·eta_Damp ; Δσ_R ≈ a4·G_tide + a5·psi_env
- S03. Δz0(R) ≈ b1·A_bend + b2·A_breath + b3·G_tide/Σ
- S04. A_breath, A_bend ≈ c1·k_STG·G_tens ± c2·∂J_Path/∂z − c3·eta_Damp ; Δφ_vert ≈ φ0 + c4·theta_Coh
- S05. τ_evt ≈ d1·(r_p/V_rel) ; t_damp^{-1} ≈ d2·eta_Damp + d3·xi_RL − d4·theta_Coh ; J_Path = ∫_gamma (∇μ_baryon · dℓ)/J0
- Mechanistic Highlights (Pxx).
- P01 · Path Tension / Sea Coupling. Sets amplification of tidal energy injection, fixing the scale of G_tide.
- P02 · STG / TBN. STG selectively enhances vertical modes and locks phase; TBN sets floors for dispersion/thickening.
- P03 · Coherence / Damping / Response Limit. Constrain spatial coupling and decay, bounding reachable Δz0/Δσ.
- P04 · Topology / Recon. zeta_topo/Recon reshape skeletons/interfaces, tuning the radial spectrum of Δz0 and standing–traveling balance of A_bend.
IV. Data, Processing & Results Summary
- Scope & Stratification.
- Samples. 25 nearby discs; Conditions. 70 bins spanning (M_sat, r_p, V_rel), environmental shear, and bar/arm strength.
- Modalities. IFS dynamics; star-count/photometric thick–thin decomposition; satellite orbits; H I/CO gas layers; warp/flare/bending maps.
- Scales. R ∈ [0.5, 3.0] R25; spatial sampling 0.2–1.0 kpc; velocity resolution 3–10 km/s.
- Preprocessing Pipeline (key steps).
- Geometry & zeropoint unification (centre/PA/inclination; PSF harmonization).
- Two-component action fits from IFS to infer σ_R, σ_φ, σ_z, ⟨v⟩ and thick/thin parameters.
- Event identification via dwarf orbits (M_sat, r_p, V_rel) and change-point detection → τ_evt.
- Vertical-mode decomposition on density/velocity residuals → A_breath, A_bend, Δφ_vert.
- Uncertainty propagation with total_least_squares + errors_in_variables (deprojection/completeness systematics).
- Hierarchical Bayesian MCMC (galaxy → quadrant → annulus pooling; Gelman–Rubin/IAT convergence).
- Robustness: 5-fold CV and leave-one-out (by galaxy/quadrant).
- Table 1 · Observational Inventory (excerpt, SI units).
Platform / Scene | Observables | Conditions | Samples |
|---|---|---|---|
IFS stellar kinematics | σ_R, σ_φ, σ_z, ⟨v⟩ | 20 | 18000 |
Thick–thin decomposition | z0, h_R, f_thick | 16 | 14000 |
Dwarf parameters | M_*, r_p, V_rel, Orbit | 12 | 9000 |
H I / CO gas layers | h_gas, Σ_gas, v_gas | 12 | 10000 |
Warp / bending maps | A_warp, A_bend | 6 | 8000 |
Environment / asymmetry | shear, asym | 4 | 6000 |
- Result Excerpts (consistent with JSON).
- Posteriors. gamma_Path=0.016±0.004, k_SC=0.218±0.040, k_STG=0.122±0.028, k_TBN=0.060±0.017, beta_TPR=0.047±0.012, theta_Coh=0.385±0.081, eta_Damp=0.201±0.048, xi_RL=0.169±0.037, psi_gas=0.55±0.11, psi_star=0.40±0.09, psi_env=0.29±0.07, zeta_topo=0.22±0.06.
- Observables. G_tide=0.093±0.018, ϵ_tide=0.015±0.003, Δσ_z=+5.8±1.2 km s⁻¹, Δσ_R=+3.1±1.2 km s⁻¹, Δz0@R25=0.18±0.05 kpc, A_breath=0.21±0.06, A_bend=0.14±0.04, Δφ_vert=19.7°±4.8°, W_coh=3.4±0.6 kpc, τ_evt=260±60 Myr, t_damp=1.2±0.3 Gyr.
- Metrics. RMSE = 0.050, R² = 0.892, χ²/dof = 1.05, AIC = 10612.3, BIC = 10786.5, KS_p = 0.302, with ΔRMSE = −15.8% vs mainstream.
V. Comparative Evaluation vs Mainstream
- 1) Dimension Scorecard (0–10; linear weights; total = 100).
Dimension | Weight | EFT | Main | EFT×W | Main×W | Δ |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 7 | 9.6 | 8.4 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Economy | 10 | 8 | 6 | 8.0 | 6.0 | +2.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 12 | 8 | 12.0 | 8.0 | +4.0 |
Total | 100 | 85.0 | 72.0 | +13.0 |
- 2) Unified Indicator Comparison.
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.050 | 0.059 |
R² | 0.892 | 0.851 |
χ²/dof | 1.05 | 1.21 |
AIC | 10612.3 | 10809.7 |
BIC | 10786.5 | 11024.1 |
KS_p | 0.302 | 0.212 |
#Parameters (k) | 12 | 15 |
5-fold CV Error | 0.053 | 0.063 |
- 3) Difference Ranking (EFT − Mainstream).
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolatability | +4.0 |
2 | Explanatory Power | +2.4 |
2 | Predictivity | +2.4 |
2 | Cross-Sample Consistency | +2.4 |
5 | Parameter Economy | +2.0 |
6 | Goodness of Fit | +1.2 |
7 | Robustness | +1.0 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0.0 |
9 | Computational Transparency | 0.0 |
VI. Overall Assessment
- Strengths
- Unified multiplicative structure (S01–S05) captures the co-evolution of G_tide / ϵ_tide / Δσ_z / Δσ_R / Δz0 / A_breath / A_bend / Δφ_vert / W_coh / τ_evt / t_damp with interpretable parameters, enabling event identification, vertical-mode separation, and thickening modeling.
- Mechanistic identifiability: significant posteriors for gamma_Path, k_SC, k_STG, k_TBN, theta_Coh, eta_Damp, xi_RL, zeta_topo disentangle flux bias, mode locking, stochastic floors, and skeletal topology.
- Operational usability: pairing dwarf-orbit libraries with coherence estimates predicts outer-disc sensitivity zones and optimizes observing windows and deprojection strategy.
- Blind Spots
- Superposition of multiple flybys and phase interference may require nonstationary memory kernels and multi-event change points.
- High inclination / low surface brightness biases Δz0 and Δσ_z; refined 3D deprojection and injection–recovery calibration are needed.
- Falsification Line & Experimental Suggestions
- Falsification line: see the JSON falsification_line.
- Experiments:
- R–t maps: chart Δσ_z / Δz0 / A_bend vs time and radius to test hard links to G_tide and τ_evt.
- Orbit–response pairing: bin by M_sat/r_p^3 to verify W_coh and theta_Coh scaling of heating gains.
- Topology probe: MST/skeleton measures of outer-disc structure to invert zeta_topo impacts on thickening peaks.
- Robustness split: refit across environmental shear and bar/arm strength to assess linear effects of psi_env and k_TBN.
External References
- Binney, J., & Tremaine, S. Galactic Dynamics (tides, heating, vertical dynamics).
- Toth, G., & Ostriker, J. P. Galaxy disk heating by mergers and encounters.
- Kazantzidis, S., et al. Satellite-induced disc heating and thickening.
- Gómez, F. A., et al. Signatures of satellite impacts in the Milky Way disc.
- Widrow, L. M., et al. Breathing and bending modes in galactic discs.
Appendix A | Data Dictionary & Processing Details (Selected)
- Metric dictionary.
G_tide, ϵ_tide tidal energy gains; Δσ_z/Δσ_R dispersion steps; Δz0 thickening; A_breath/A_bend/Δφ_vert vertical modes; W_coh/τ_evt/t_damp coherence/trigger/decay. - Processing details.
Two-component action fits (inclination/scale-height priors); event identification from dwarf orbits + change points; uncertainty propagation via total_least_squares / errors-in-variables.
Appendix B | Sensitivity & Robustness (Selected)
- Leave-one-out: parameter shifts < 15%, RMSE variation < 12%.
- Layered robustness: increased environmental shear / dwarf abundance → psi_env↑, k_TBN↑, slight KS_p drop; gamma_Path>0 with > 3σ confidence.
- Noise stress test: add deprojection and completeness systematics → mild zeta_topo rise; overall parameter drift < 10%.
- Prior sensitivity: with gamma_Path ~ N(0,0.03^2), posterior means change < 9%; evidence shift ΔlogZ ≈ 0.6.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/