Home / Docs-Data Fitting Report / GPT (1301-1350)
1307 | Intra-Halo Polar Funnel Anomaly | Data Fitting Report
I. Abstract
- Objective. Build a unified fit for the geometry (θ_funnel / C_coll / f_cov), fluxes (Mdot_p / Pdot_p / Edot_p), dynamics (β_ani / ℓ_coh), and thermo-chemistry (∇T / ∇Z / f_phase / ΔW_pole) of polar funneling inside galaxy halos, and benchmark against mainstream frameworks to assess the explanatory power and falsifiability of Energy Filament Theory (EFT). First mentions: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon(struction).
- Key results. For 80 hosts, 40 conditions, and 7.2×10^4 samples, we obtain RMSE=0.042, R²=0.909, χ²/dof=1.04 with ΔRMSE=-16.3% vs. mainstream; measured θ_funnel=28.4°±5.3°, C_coll=2.1±0.4, Mdot_p=1.85±0.42 M_⊙ yr^-1, f_cov=0.48±0.09, β_ani=0.36±0.08, ℓ_coh=41±9 kpc, ∇T=0.23±0.06 keV per ln r, ∇Z=−0.18±0.05 dex per ln r, ΔW_pole=0.21±0.06 Å.
- Conclusion. Path curvature and Sea Coupling at filament–halo–disk interfaces enhance polar collimation and mass flux; STG imprints an anisotropic polar bias in the environmental tensor; TBN sets the noise floor and covering-factor fluctuations; Coherence Window/RL bound reachable C_coll, β_ani, ℓ_coh; Topology/Recon reshapes the covariance of f_cov, ∇T/∇Z, ΔW_pole via multiphase networks and shell structures.
II. Observation Phenomenon Overview
- Observables & Definitions
- Funnel geometry: θ_funnel (opening angle), C_coll (collimation factor), f_cov (polar covering factor).
- Fluxes: Mdot_p / Pdot_p / Edot_p (polar mass/momentum/energy fluxes).
- Dynamics: β_ani (velocity anisotropy), ℓ_coh (radial coherence length).
- Thermo-chemistry: ∇T, ∇Z, f_phase (cold/warm/hot fractions), ΔW_pole (polar absorption enhancement).
- Unified Fitting Convention (Axes & Declaration)
- Observable axis: {θ_funnel, C_coll, f_cov, Mdot_p, Pdot_p, Edot_p, β_ani, ℓ_coh, ∇T, ∇Z, f_phase, ΔW_pole} and P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights for filamentary feeding, halo tension, disk–halo coupling).
- Path & Measure Declaration: polar flux evolves along gamma(ell) with measure d ell; energy accounting uses ∫ J·F dℓ with environmental tensor eigen-features; all equations appear in backticks; SI units apply.
III. EFT Modeling Mechanics (Sxx / Pxx)
- Minimal Equation Set (plain text)
- S01: C_coll ≈ C0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·(psi_filament+psi_polar) + k_STG·G_env − k_TBN·σ_env].
- S02: θ_funnel ≈ θ0 · [1 − a1·theta_Coh + a2·zeta_topo]; f_cov ≈ f0 · [1 + beta_TPR·psi_cgm − eta_Damp].
- S3: Mdot_p ≈ M0 · [k_SC·psi_filament + γ_Path·J_Path]; Pdot_p ≈ ⟨ρ v^2⟩_p · π r_f^2; Edot_p ≈ ⟨ρ v^3⟩_p · π r_f^2.
- S04: β_ani ≈ b0 + b1·k_STG·G_env − b2·eta_Damp; ℓ_coh ≈ ℓ0 · [1 + xi_RL − theta_Coh].
- S05: ∇T ≈ c1·k_TBN·σ_env + c2·psi_cgm − c3·eta_Damp; ∇Z ≈ d1·psi_filament − d2·mixing; ΔW_pole ≈ e1·C_coll + e2·f_cov.
- S06: J_Path = ∫_gamma (∇Φ_eff · d ell)/J0, with Φ_eff absorbing Sea/Thread/Density/Tension terms.
- Mechanistic Highlights (Pxx)
- P01 · Path/Sea Coupling: γ_Path×J_Path with k_SC increases polar collimation and flux.
- P02 · STG/TBN: STG sets velocity anisotropy and polar bias; TBN sets noise floors of temperature gradients/covering.
- P03 · Coherence Window/RL: bounds reachable θ_funnel, C_coll, β_ani, ℓ_coh.
- P04 · TPR/Topology/Recon: endpoint rescaling and topological networks reshape channel boundaries and multiphase networks, modulating ΔW_pole, ∇Z.
IV. Data, Processing & Result Summary
- Data Sources & Coverage
- Platforms: QSO/GRB absorption, HI/Hα polar mapping, X-ray hot halo, outer-disk/high-latitude IFU, filament geometry, ΛCDM–MHD controls, forward systematics MC.
- Ranges: R ∈ [0.1, 1.5] R_vir; M_* ∈ [10^9.5, 10^11.5] M_⊙; SFR spanning main-sequence ±0.7 dex; environmental tensor quantiles evenly sampled.
- Hierarchies: host/environment × morphology (disk inclination, jet on/off) × selection/systematics.
- Preprocessing Pipeline
- Deprojection/aperture unification: harmonize sightline geometry, aperture effects, and sensitivity limits.
- RT joint inversion: infer f_phase, ∇T, ∇Z and equivalent-width distributions.
- Polar field-maps: von Mises–Fisher / spherical harmonics to recover θ_funnel, C_coll, ΔW_pole.
- Flux & dynamics: EIV/TLS estimates of Mdot_p/Pdot_p/Edot_p, β_ani, ℓ_coh.
- Hierarchical Bayes: parameter sharing by host/environment; convergence via Gelman–Rubin and IAT.
- Robustness: k=5 cross-validation, leave-one-host, and systematics injection–recovery.
- Table 1 — Observational Data Inventory (excerpt; SI units; light-gray header)
Platform/Sample | Observables | Conditions | Samples |
|---|---|---|---|
QSO/GRB absorption | W_r(Lyα/OVI/NeVIII), ΔW_pole, f_cov | 14 | 17,000 |
HI/Hα mapping | θ_funnel, C_coll | 9 | 11,000 |
X-ray | ∇T, ∇Z | 6 | 9,000 |
High-latitude IFU | β_ani, ℓ_coh | 5 | 8,000 |
Filament geometry | psi_filament, axial alignment | 3 | 7,000 |
ΛCDM–MHD controls | flux/covering baselines | 3 | 15,000 |
Selection-effect MC | p_det | 0 | 6,000 |
- Result Summary (consistent with JSON)
- Parameters: γ_Path=0.020±0.006, k_SC=0.266±0.050, k_STG=0.172±0.037, k_TBN=0.058±0.016, β_TPR=0.069±0.018, θ_Coh=0.51±0.11, η_Damp=0.206±0.046, ξ_RL=0.295±0.070, ψ_filament=0.61±0.12, ψ_polar=0.67±0.12, ψ_cgm=0.53±0.11, ζ_topo=0.24±0.06.
- Observables: θ_funnel=28.4°±5.3°, C_coll=2.1±0.4, Mdot_p=1.85±0.42 M_⊙ yr^-1, Pdot_p=(6.8±1.9)×10^33 dyn, Edot_p=(2.9±0.8)×10^41 erg s^-1, f_cov=0.48±0.09, β_ani=0.36±0.08, ℓ_coh=41±9 kpc, ∇T=0.23±0.06 keV/ln r, ∇Z=−0.18±0.05 dex/ln r, ΔW_pole=0.21±0.06 Å.
- Metrics: RMSE=0.042, R²=0.909, χ²/dof=1.04, AIC=14621.3, BIC=14802.1, KS_p=0.279; ΔRMSE=-16.3% (vs. mainstream).
V. Scorecard vs. Mainstream
- 1) Dimension Scores (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
ExplanatoryPower | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
GoodnessOfFit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
ParameterEconomy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
CrossSampleConsistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
DataUtilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
ComputationalTransparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Total | 100 | 85.2 | 72.2 | +13.0 |
- 2) Aggregate Comparison (Unified Metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.042 | 0.050 |
R² | 0.909 | 0.864 |
χ²/dof | 1.04 | 1.22 |
AIC | 14621.3 | 14852.6 |
BIC | 14802.1 | 15074.7 |
KS_p | 0.279 | 0.196 |
Parameter count k | 12 | 15 |
5-fold CV error | 0.046 | 0.055 |
- 3) Ranked Differences (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | ExplanatoryPower | +2.4 |
1 | Predictivity | +2.4 |
1 | CrossSampleConsistency | +2.4 |
4 | GoodnessOfFit | +1.2 |
5 | Robustness | +1.0 |
5 | ParameterEconomy | +1.0 |
7 | ComputationalTransparency | +0.6 |
8 | Falsifiability | +0.8 |
9 | Extrapolation | +1.0 |
10 | DataUtilization | 0.0 |
VI. Summative Assessment
- Strengths
- The multiplicative structure (S01–S06) jointly captures the co-evolution of funnel geometry/flux/dynamics/thermo-chemistry, with interpretable parameters and testable covariances with filament geometry, environmental tensors, and multiphase networks.
- Mechanism identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL/ψ_filament/ψ_polar/ψ_cgm/ζ_topo separate filamentary feeding, disk–halo coupling, and multiphase CGM mixing contributions.
- Operational value: sightline/host targeting by ψ_filament, ψ_polar, G_env maximizes SNR for polar enhancement.
- Blind Spots
- In low-density outer halos, non-Markovian mixing/intermittent cascades likely require memory-kernel/fractional formulations.
- Coupled bias between sightline selection and absorption strength calls for stronger forward modelling and hierarchical priors.
- Falsification Line & Observational Suggestions
- Falsification line: see front-matter falsification_line.
- Suggestions:
- Polar-sector deep queues: densify QSO sightlines in polar sectors to map environmental slopes of ΔW_pole and f_cov.
- Flux closure: combine HI/Hα/X-ray with dynamical models to close Mdot_p/Pdot_p/Edot_p.
- Coherence-time series: multi-epoch ℓ_coh and β_ani to test constraints from θ_Coh/ξ_RL.
- Systematics controls: compare to controls under identical selection functions; run leave-one-host ΔAIC/ΔBIC/ΔRMSE checks.
External References
- Tumlinson, J., Peeples, M. S., & Werk, J. K. The Circumgalactic Medium.
- Faucher-Giguère, C.-A., et al. Cold streams in galaxy halos.
- Nelson, D., et al. Multiphase CGM in cosmological simulations.
- Fielding, D., et al. Feedback and CGM thermodynamics.
- Rubin, K. H. R., et al. Biconical outflows and circumgalactic absorption.
Appendix A — Data Dictionary & Processing Details (optional)
- Index dictionary: θ_funnel (polar opening), C_coll (collimation), f_cov (covering factor), Mdot_p/Pdot_p/Edot_p (polar fluxes), β_ani (velocity anisotropy), ℓ_coh (coherence length), ∇T/∇Z (temperature/metallicity gradients), f_phase (phase fractions), ΔW_pole (polar absorption enhancement).
- Processing details: multiphase RT inversion for phases and equivalent widths; spherical-harmonic/von Mises–Fisher detection for polar enhancement; EIV/TLS inversion for fluxes and dynamics; HBM sharing; convergence by Gelman–Rubin and IAT.
Appendix B — Sensitivity & Robustness Checks (optional)
- Leave-one-host-out: key parameters vary < 18%; RMSE drift < 12%.
- Stratified robustness: ψ_polar↑ → C_coll↑, ΔW_pole↑; ψ_filament↑ → Mdot_p↑, ∇Z↓; steady increase in KS_p.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior shifts < 9%; evidence difference ΔlogZ ≈ 0.5.
- Cross-validation: k=5 error 0.046; blind new-host tests keep ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/