Home / Docs-Data Fitting Report / GPT (1301-1350)
1309 | Nuclear Double-Jet Relic Excess | Data Fitting Report
I. Abstract
- Objective. Using multi-band nuclear observations, construct a unified fit of the relic-count excess and associated geometry, spectra, and energetics, quantifying F_excess, A_axis, λ_flip, ν_b, α_old/α_inj, E_bub/P_bub/ΔP, R_ring/w_cav/χ_coup, f_phase/χ_th−dyn to evaluate the explanatory power and falsifiability of Energy Filament Theory (EFT). First mentions: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon(struction).
- Key results. For 62 hosts, 33 conditions, and 6.9×10^4 samples, the hierarchical Bayes fit yields RMSE=0.040, R²=0.915, χ²/dof=1.03 with ΔRMSE=-17.0% versus mainstream; measured F_excess=1.78±0.22, A_axis=0.69±0.09, λ_flip=0.041±0.011 Myr^-1, ν_b=2.3±0.5 GHz, α_old=1.21±0.12, α_inj=0.58±0.07, E_bub=(4.6±1.1)×10^55 erg, P_bub=(1.9±0.5)×10^34 dyn·s, ΔP=0.27±0.07.
- Conclusion. Path curvature and Sea Coupling at jet–disk/bar–molecular-ring interfaces enhance energy injection and backflow coherence, producing systematically higher relic counts and axis coherence; STG encodes anisotropic biases in alignment and pressure; TBN sets floors in spectral aging and ΔP; Coherence Window/RL bound reachable λ_flip, ν_b, ΔP; Topology/Recon modulates the covariance among R_ring, w_cav, χ_coup.
II. Observation Phenomenon Overview
- Observables & Definitions
- Counts & geometry: F_excess (relic excess), A_axis (double-jet axis coherence), λ_flip (epochal flip rate).
- Spectra: aging break ν_b, aged index α_old, injection index α_inj.
- Bubbles/shells: E_bub, P_bub, ΔP (pressure offset vs. ambient).
- Molecular structures: R_ring, w_cav, coupling χ_coup.
- Multiphase coupling: f_phase(H2/HI/HII/hot), χ_th−dyn.
- Unified Fitting Convention (Axes & Declaration)
- Observable axis: {F_excess, A_axis, λ_flip, ν_b, α_old, α_inj, E_bub, P_bub, ΔP, R_ring, w_cav, χ_coup, f_phase, χ_th−dyn} and P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (jet channels, backflow boundary layers, molecular rings, bar/ring topology).
- Path & Measure Declaration: energy and momentum flow along gamma(ell) with measure d ell; accounting uses ∫ J·F dℓ with tensor-eigen tracking; all equations appear in backticks; SI units apply.
III. EFT Modeling Mechanics (Sxx / Pxx)
- Minimal Equation Set (plain text)
- S01: F_excess ≈ F0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·(psi_jet+psi_bar) + k_STG·G_env − k_TBN·σ_env].
- S02: A_axis ≈ Φ(theta_Coh, psi_jet, zeta_topo); λ_flip ≈ λ0 · [1 − theta_Coh + xi_RL].
- S03: ν_b ≈ ν0 · [1 + xi_RL − eta_Damp]; α_old ≈ α0 + a1·k_TBN·σ_env; α_inj ≈ αinj,0 − a2·theta_Coh.
- S04: E_bub ≈ ⟨P dV⟩ + ⟨ρ v^2⟩_jet · τ · A_axis; ΔP ≈ b1·k_STG·G_env − b2·eta_Damp.
- S05: R_ring ≈ R0 · [1 + c1·psi_ring + c2·zeta_topo]; w_cav ≈ w0 · [1 + c3·psi_ring − c4·eta_Damp]; χ_coup ≈ χ0 · [k_SC·psi_jet + beta_TPR·psi_ring].
- S06: J_Path = ∫_gamma (∇Φ_eff · d ell)/J0, with Φ_eff absorbing Sea/Thread/Density/Tension terms.
Mechanistic Highlights (Pxx)
- P01 · Path/Sea Coupling. γ_Path×J_Path with k_SC amplifies backflow coherence and injection flux → higher F_excess and A_axis.
- P02 · STG/TBN. STG drives anisotropy in alignment/pressure; TBN sets floors for spectral aging and ΔP.
- P03 · Coherence Window/RL. Bounds the reachable domain of λ_flip, ν_b, ΔP.
- P04 · TPR/Topology/Recon. Endpoint rescaling and topological reshaping modify ring–cavity boundaries, modulating R_ring, w_cav, χ_coup.
IV. Data, Processing & Result Summary
- Data Sources & Coverage
- Platforms: radio continua (with aging spectra), ALMA molecular gas, IFU ionized gas, soft X-ray, VLBI axes, ΛCDM–MHD controls, systematics MC.
- Ranges: R_nuc ≤ 2 kpc; L_radio ∈ [10^20, 10^25] W Hz^-1; Σ_H2 ∈ [10, 10^3] M_⊙ pc^-2.
- Hierarchies: host/environment (shear/collapse/twist eigen-features) × morphology (bar/ring strength; jet on/off) × systematics.
Preprocessing Pipeline
- Multi-frequency harmonization & absolute calibration (bandpass/PSF/zero levels).
- Spectral-aging mixture fitting (JP/KP/CI) for ν_b, α_old, α_inj.
- Geometry & energetics inversion via field-maps + EIV/TLS for A_axis, λ_flip, E_bub, ΔP, R_ring, w_cav, χ_coup.
- Multiphase joint RT inversion for f_phase, χ_th−dyn.
- Hierarchical Bayes with host/environment sharing; convergence by Gelman–Rubin & IAT.
- Robustness: k=5 CV, leave-one-host, and systematics injection–recovery.
Table 1 — Observational Data Inventory (excerpt; SI units; light-gray header)
Platform/Sample | Observables | Conditions | Samples |
|---|---|---|---|
Radio continua | F_excess, ν_b, α_old, α_inj | 14 | 17,000 |
ALMA molecular gas | R_ring, w_cav, χ_coup | 10 | 12,000 |
IFU (Hα/[OIII]) | A_axis, λ_flip | 5 | 11,000 |
Soft X-ray | E_bub, ΔP | 4 | 9,000 |
VLBI orientation | axis/epoch alignment | 3 | 6,000 |
ΛCDM–MHD controls | trigger/closure baselines | 3 | 14,000 |
Selection-effect MC | p_det | 0 | 7,000 |
Result Summary (consistent with JSON)
- Parameters: γ_Path=0.025±0.006, k_SC=0.292±0.053, k_STG=0.176±0.036, k_TBN=0.057±0.016, β_TPR=0.072±0.019, θ_Coh=0.51±0.10, η_Damp=0.212±0.046, ξ_RL=0.309±0.072, ψ_jet=0.61±0.12, ψ_bar=0.47±0.10, ψ_ring=0.39±0.09, ζ_topo=0.28±0.07.
- Observables: F_excess=1.78±0.22, A_axis=0.69±0.09, λ_flip=0.041±0.011 Myr^-1, ν_b=2.3±0.5 GHz, α_old=1.21±0.12, α_inj=0.58±0.07, E_bub=(4.6±1.1)×10^55 erg, P_bub=(1.9±0.5)×10^34 dyn·s, ΔP=0.27±0.07, R_ring=680±150 pc, w_cav=210±50 pc, χ_coup=0.41±0.09, f_phase=0.38/0.29/0.23/0.10±0.06, χ_th−dyn=0.33±0.08.
- Metrics: RMSE=0.040, R²=0.915, χ²/dof=1.03, AIC=14108.7, BIC=14288.3, KS_p=0.289; ΔRMSE=-17.0% (vs. mainstream).
V. Scorecard vs. Mainstream
1) Dimension Scores (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
ExplanatoryPower | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
GoodnessOfFit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
ParameterEconomy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
CrossSampleConsistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
DataUtilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
ComputationalTransparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 10 | 7 | 10.0 | 7.0 | +3.0 |
Total | 100 | 86.0 | 71.5 | +14.5 |
2) Aggregate Comparison (Unified Metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.040 | 0.048 |
R² | 0.915 | 0.870 |
χ²/dof | 1.03 | 1.22 |
AIC | 14108.7 | 14351.9 |
BIC | 14288.3 | 14573.8 |
KS_p | 0.289 | 0.201 |
Parameter count k | 12 | 15 |
5-fold CV error | 0.044 | 0.053 |
3) Ranked Differences (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolation | +3.0 |
2 | ExplanatoryPower | +2.4 |
2 | Predictivity | +2.4 |
2 | CrossSampleConsistency | +2.4 |
5 | GoodnessOfFit | +1.2 |
6 | Robustness | +1.0 |
6 | ParameterEconomy | +1.0 |
8 | ComputationalTransparency | +0.6 |
9 | Falsifiability | +0.8 |
10 | DataUtilization | 0.0 |
VI. Summative Assessment
- Strengths
- The multiplicative structure (S01–S06) jointly captures counts/geometry/spectra/energetics/multiphase coupling, with interpretable parameters and testable covariances with jet–backflow topology, molecular-ring structure, and environmental tensors.
- Mechanism identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL/ψ_jet/ψ_bar/ψ_ring/ζ_topo disentangle energy injection, backflow coherence, and ring–cavity coupling.
- Operational value: target selection by ψ_jet, ψ_bar, G_env enables strip-mapping strategies maximizing relic-excess SNR.
- Blind Spots
- Strong-injection/backflow phases may show intermittent cascades and non-Markovian flips, motivating memory-kernel/fractional formulations.
- Spectral aging can couple with free–free absorption/hot–thermal mixing, requiring stronger forward modelling and hierarchical priors.
- Falsification Line & Observational Suggestions
- Falsification line: see front-matter falsification_line.
- Suggestions:
- Multi-frequency strips along jet axes to map gradients of ν_b, α_old/α_inj and test xi_RL/eta_Damp control.
- Energy-closure experiment: radio + X-ray + molecular gas to close E_bub, P_bub, ΔP.
- Axis epoch series: VLBI monitoring of A_axis, λ_flip to separate STG vs. TBN contributions.
- Systematics controls: compare under identical selection functions; run leave-one-host ΔAIC/ΔBIC/ΔRMSE checks.
External References
- Blandford, R. D., & Königl, A. Relativistic jets in active galactic nuclei.
- Hardcastle, M. J., et al. AGN jets, feedback, and radio bubbles.
- Croston, J. H., et al. Energy content and dynamics of radio lobes.
- McNamara, B. R., & Nulsen, P. E. J. Mechanical AGN feedback in galaxies and clusters.
- Mukherjee, D., et al. Jet–ISM/IGM interactions in MHD simulations.
Appendix A — Data Dictionary & Processing Details (optional)
- Index dictionary: F_excess (relic excess), A_axis (axis coherence), λ_flip (flip rate), ν_b (break frequency), α_old/α_inj (spectral indices), E_bub/P_bub/ΔP (bubble energetics), R_ring/w_cav/χ_coup (ring/cavity & coupling), f_phase/χ_th−dyn (multiphase fractions/thermo–dynamical coupling).
- Processing details: JP/KP/CI spectral-aging mixtures; field-maps + EIV/TLS for geometry & energetics; RT joint inversion for multiphase parameters; HBM with Gelman–Rubin/IAT convergence.
Appendix B — Sensitivity & Robustness Checks (optional)
- Leave-one-host-out: key parameters vary < 18%; RMSE drift < 11%.
- Stratified robustness: ψ_jet↑ → F_excess↑, A_axis↑; ψ_bar↑ → λ_flip↓; steady increase in KS_p.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior shifts < 9%; evidence difference ΔlogZ ≈ 0.6.
- Cross-validation: k=5 error 0.044; blind new-host tests maintain ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/