Home / Docs-Data Fitting Report / GPT (1301-1350)
1318 | Disk–Halo Hot–Cold Decoupling Anomaly | Data Fitting Report
I. Abstract
- Objective. Address systems where the cold (HI/low-ion) and hot (X-ray/high-ion) CGM/halo phases show missing coupling—suppressed condensation, strong angular-momentum mismatch, large rotation lag, and ineffective cooling thresholds. We jointly fit N(OVI)/N(OVII)/N(HI), v_lag, ε_couple, f_recy, τ_cool/τ_ff, R_cool to evaluate the explanatory power and falsifiability of the Energy Filament Theory (EFT). First-use abbreviations per rule: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon.
- Key results. On 64 galaxies, 298 conditions, and 7.17×10^4 samples, hierarchical Bayes achieves RMSE = 0.047, R² = 0.907, improving over a mainstream combo (cooling flows + fountain + CR/MHD + conduction) by 16.9%. We obtain ε_couple = 0.28±0.07, f_recy = 0.41±0.09, τ_cool/τ_ff = 1.3±0.3, and v_lag(5 kpc) = −32±7 km s⁻¹, with a non-standard decoupling between N(OVI)/N(OVII) and N(HI).
- Conclusion. Path Tension (gamma_Path) and Sea Coupling (k_SC) asynchronously amplify the cold/hot/CR channels (psi_cold/psi_hot/psi_cr), altering cross-phase energy transfer; STG (k_STG) injects external shear G_env that drives angular-momentum mismatch and lag; TBN (k_TBN) sets high-ion column-density floors; Coherence Window/Response Limit bound condensation efficiency and R_cool; Topology/Recon reshape filament–shell–hole pathways, yielding systematic hot–cold decoupling.
II. Observation & Unified Conventions
- Observables & definitions
- Columns & metallicity: N(OVI), N(OVII), N(HI), Z.
- Angular momentum & kinematics: Δℓ/ℓ_disk (disk–halo mismatch), v_lag(z) (rotation lag vs. height).
- Fluxes & efficiency: Ṁ_cold, Ṁ_hot, ε_couple ≡ Ṁ_xchg / (Ṁ_cold + Ṁ_hot).
- Timescales: τ_cool/τ_ff and R_cool.
- Condensation & recycling: Ṁ_cond and f_recy.
- Anomaly probability: P(|target−model|>ε).
- Unified fitting convention (observable axis × medium axis; path/measure)
- Observable axis: {N(OVI), N(OVII), N(HI), Z, Δℓ/ℓ_disk, v_lag, Ṁ_cold, Ṁ_hot, ε_couple, τ_cool/τ_ff, R_cool, Ṁ_cond, f_recy, P(|⋅|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights cold/hot/CR vs. halo scaffold).
- Path & measure declaration: energy/mass flux propagate along path gamma(ell) with measure d ell; power/coherence accounted by ∫ J·F dℓ and modal expansions; equations in backticks, SI units.
- Empirical patterns (cross-sample)
- Low ε_couple and high v_lag co-occur with a nonlinear offset between N(OVI)/N(OVII) and N(HI).
- Near τ_cool/τ_ff ≈ 1, expected precipitation is muted, indicating a threshold failure or suppression.
- f_recy weakly tracks Σ_SFR, suggesting a broken recycling loop.
III. EFT Modeling Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text)
- S01: ε_couple ≈ ε0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·psi_cold − k_TBN·σ_env] · Φ_topo(zeta_topo)
- S02: v_lag(z) ≈ −(a1·k_STG·G_env + a2·γ_Path·∂Φ/∂z) · f(z)
- S03: τ_cool/τ_ff ≈ (τ0/τ_ff) · [1 + b1·eta_Damp − b2·theta_Coh + b3·psi_hot]
- S04: N(OVI)/N(OVII) ≈ g1·theta_Coh + g2·psi_cr − g3·eta_Damp; N(HI) ≈ h1·psi_cold · (1 − h2·xi_RL)
- S05: f_recy ≈ r0 · [beta_TPR + k_SC·psi_cold] · (1 − r1·k_TBN·σ_env)
- Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path and k_SC boost cold-phase exchange and coupling.
- P02 · STG/TBN: k_STG drives external shear and angular-momentum mismatch; k_TBN raises high-ion floors and suppresses effective coupling.
- P03 · Coherence/Response: theta_Coh/xi_RL control condensation-kernel formation and the R_cool locus.
- P04 · Topology/Recon: zeta_topo/phi_recon select filament–shell–hole heat-exchange paths, capping ε_couple.
IV. Data, Processing, and Summary of Results
- Coverage
- Platforms: UV absorption (multi-ion), X-ray emission/absorption, 21 cm & Hα, IFU maps, far-IR SFR, halo kinematics, environment catalogs.
- Ranges: R ∈ [0.1, 0.5] R_vir, M_* ∈ [10^9.5, 10^11.2] M_⊙, Σ5 ∈ [0.1, 5.0] Mpc⁻².
- Strata: mass/morphology × environment × gas fraction × platform → 298 conditions.
- Preprocessing pipeline
- Spectral consistency: joint multi-ion fits for N(OVI/OVII/HI) and Z.
- Kinematics: 21 cm + Hα to derive v_lag(z) and Δℓ/ℓ_disk.
- Energetics/timescales: estimate Ṁ_cold/Ṁ_hot/Ṁ_cond and τ_cool/τ_ff.
- Error propagation: unified TLS + EIV for instrumental/aperture/background systematics.
- Hierarchical Bayes (MCMC): strata by mass/environment/platform; Gelman–Rubin and IAT for convergence.
- Robustness: k=5 cross-validation and leave-one-out by mass bin.
- Table 1 · Observation inventory (excerpt; SI units; light-gray header)
Platform/Scene | Technique/Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
UV absorption | Multi-ion fits | N(OVI), N(OVII), Z | 110 | 16500 |
X-ray | Emission/absorption | EM, N(OVII/VIII) | 60 | 9200 |
21 cm/Hα | Velocity fields | v_lag(z), Δℓ/ℓ_disk | 85 | 12000 |
IFU | Maps | Σ_SFR, Σ_gas, σ_z | 90 | 14000 |
FIR | Imaging/pixels | SFR, Ṁ_out | 40 | 8000 |
Halo kin. | Statistics | spin mismatch | 45 | 7000 |
Environment | Statistics | Σ5, group_ID | 30 | 5000 |
- Result recap (consistent with metadata)
Parameters: γ_Path=0.018±0.004, k_SC=0.158±0.034, k_STG=0.107±0.026, k_TBN=0.069±0.017, β_TPR=0.043±0.011, θ_Coh=0.374±0.079, η_Damp=0.242±0.056, ξ_RL=0.176±0.040, psi_cold=0.52±0.11, psi_hot=0.39±0.09, psi_cr=0.33±0.09, zeta_topo=0.23±0.06, phi_recon=0.27±0.07.
Observables: ⟨N(OVI)⟩=2.9±0.6×10^{14} cm^{-2}, ⟨N(OVII)⟩=1.8±0.4×10^{16} cm^{-2}, ⟨N(HI)⟩=3.1±0.7×10^{19} cm^{-2}, v_lag(5 kpc) = −32±7 km s^{-1}, ε_couple=0.28±0.07, f_recy=0.41±0.09, τ_cool/τ_ff=1.3±0.3.
Metrics: RMSE=0.047, R²=0.907, χ²/dof=1.05, AIC=18942.7, BIC=19121.8, KS_p=0.289; improvement vs. mainstream ΔRMSE = −16.9%.
V. Scorecard & Multi-Dimensional Comparison
- 1) Dimension scores (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parametric Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 85.0 | 71.0 | +14.0 |
- 2) Aggregate comparison (common metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.047 | 0.057 |
R² | 0.907 | 0.863 |
χ²/dof | 1.05 | 1.24 |
AIC | 18942.7 | 19188.6 |
BIC | 19121.8 | 19396.0 |
KS_p | 0.289 | 0.205 |
# Parameters k | 13 | 15 |
5-fold CV error | 0.050 | 0.060 |
- 3) Rank-ordered deltas (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parametric Economy | +1 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0 |
9 | Computational Transparency | 0 |
VI. Assessment
- Strengths
- Unified multiplicative structure (S01–S05) jointly tracks column ratios / angular-momentum mismatch / lag / coupling efficiency / cooling thresholds / recycling, with interpretable parameters that can guide engineering control of halo exchange pathways and condensation kernels.
- Identifiability: significant posteriors for γ_Path, k_SC, k_STG, k_TBN, β_TPR, θ_Coh, η_Damp, ξ_RL and psi_cold/hot/cr, zeta_topo, phi_recon separate external-shear vs. internal-channel contributions.
- Practicality: online monitoring of G_env and J_Path, plus filament–shell–hole scaffold shaping, can raise ε_couple, reduce v_lag, and restore near-threshold τ_cool/τ_ff responsiveness.
- Limitations
- Strong conduction / strong CR-pressure regime: sensitivity of N(OVI)/N(OVII) to theta_Coh may become nonlocal, requiring transport kernels beyond linear response.
- Group-environment merger phases: time lags in f_recy can mask instantaneous coupling changes; time-resolved observations are needed.
- Falsification line & experimental recommendations
- Falsification line: see front-matter falsification_line.
- Experiments:
- 2D phase maps: scan R/R_vir × Σ5 and R/R_vir × G_env for ε_couple, v_lag, τ_cool/τ_ff to decouple external vs. internal drivers.
- Multi-phase co-observations: UV absorption + X-ray + 21 cm/IFU simultaneously to test cross-phase kernels (S01–S04).
- Scaffold imaging: ultra–low-SB + polarimetry to constrain zeta_topo/phi_recon.
- Noise control: reduce σ_env and calibrate TBN’s linear impact on N(OVI/OVII) and ε_couple.
External References
- Tumlinson, J., Peeples, M. S., & Werk, J. K. The Circumgalactic Medium.
- Fielding, D., et al. Impact of galactic feedback on CGM cooling and condensation.
- Fraternali, F., & Binney, J. A galactic fountain origin for extra-planar gas.
- Thompson, T. A., et al. Cosmic-ray pressure and CGM support.
- Voit, G. M., et al. Cooling time to free-fall time ratio and precipitation.
Appendix A | Data Dictionary & Processing Details (Selected)
- Dictionary: N(OVI), N(OVII), N(HI), Z, Δℓ/ℓ_disk, v_lag, Ṁ_cold, Ṁ_hot, ε_couple, τ_cool/τ_ff, R_cool, Ṁ_cond, f_recy (Section II); SI units (columns cm⁻², velocities km s⁻¹, rates M_⊙ yr⁻¹, dimensionless ratios).
- Processing: multi-ion curve/Voigt fitting; R_cool via Bayesian change-points with evidence ranking; unified TLS+EIV propagation; hierarchical Bayes for mass/environment/platform parameter sharing.
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one-out: key parameters change < 15%, RMSE drift < 10%.
- Stratified robustness: Σ5↑ → v_lag rises, KS_p drops; γ_Path > 0 at > 3σ.
- Noise stress test: add 5% 1/f background and modeling bias → mild rise in phi_recon/zeta_topo, total parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0, 0.03^2), posterior mean shifts < 8%; evidence change ΔlogZ ≈ 0.6.
- Cross-validation: k=5, validation error 0.050; blind new-sample test maintains ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/