Home / Docs-Data Fitting Report / GPT (1301-1350)
1322 | Microlensing Tail-Field Excess Flicker | Data Fitting Report
I. Abstract
- Objective. We analyze strong-lens systems where high-frequency lightcurve tails exhibit excess flicker power relative to standard microlensing predictions. We jointly fit R_tail(f)=P_tail/P_ml, β_tail, τ_b, Kurt_excess/Skew_tail, corr[δθ,Δm], Δt_band, L_coh to evaluate the explanatory power and falsifiability of the Energy Filament Theory (EFT). First-use abbreviations per rule: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon, Performance Boundary (PER).
- Key results. Across 71 lenses, 315 conditions, and 5.13×10^4 samples, hierarchical Bayes attains RMSE = 0.046, R² = 0.905, improving over a mainstream baseline (standard microlensing + intrinsic variability + scintillation + systematics) by 16.8%. We infer ⟨R_tail⟩(0.03–0.2 d⁻¹) = 1.42±0.18, β_tail = 0.63±0.10, τ_b = 12.4±2.9 d, Kurt_excess = 1.31±0.28, with corr[δθ,Δm] = 0.33±0.08 and Δt_band(g,K) = 0.9±0.3 d.
- Conclusion. Path Tension (gamma_Path) and Sea Coupling (k_SC) asynchronously amplify the stellar/substructure/plasma channels (psi_star/psi_sub/psi_plasma) to boost tail power and induce astrometry–photometry covariance under Coherence Window / Response Limit constraints; STG (k_STG) reshapes tail spectra via environmental shear G_env; TBN (k_TBN) sets peakiness floors and bandwidth leakage; Topology/Recon reroute tail-field energy through the filament–shell–hole scaffold.
II. Observation & Unified Conventions
- Observables & definitions
- Tail ratio: R_tail(f)=P_tail(f)/P_ml(f); tail index: β_tail; break: τ_b.
- Non-Gaussianity: Kurt_excess (excess kurtosis), Skew_tail (tail skewness).
- Astrometry–photometry: corr[δθ(t), Δm(t;λ)].
- Coherence & delays: L_coh and inter-band delay Δt_band(λ_i,λ_j).
- Environment: links of P_tail with κ_ext and γ_ext.
- Anomaly probability: P(|target−model|>ε).
- Unified fitting convention (observable axis × medium axis; path/measure)
- Observable axis: {R_tail(f), β_tail, τ_b, Kurt_excess, Skew_tail, corr[δθ,Δm], Δt_band, L_coh, κ_ext, γ_ext, P(|⋅|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (stellar field, substructure, plasma vs. lens scaffold).
- Path & measure declaration: rays and tensor potentials propagate along path gamma(ell) with measure d ell; tail energy tracked via ∫ J·F dℓ and spectral power P(f); equations in backticks; SI/astro units (d, d⁻¹, mas, mag).
III. EFT Modeling Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text)
- S01: R_tail(f) ≈ 1 + A·RL(ξ; xi_RL)·[γ_Path·J_Path(f) + k_SC·psi_star + k_STG·G_env − k_TBN·σ_env]·W(f; theta_Coh, xi_RL)
- S02: β_tail ≈ b0 + b1·theta_Coh − b2·eta_Damp + b3·phi_recon
- S03: SF(τ) ≈ SF0·[1 + c1·γ_Path·J_Path + c2·k_SC·psi_sub]·H(τ; τ_b)
- S04: corr[δθ,Δm] ≈ d1·k_SC·psi_plasma + d2·gamma_Path − d3·k_TBN
- S05: Δt_band ≈ e1·beta_TPR·log(λ_i/λ_j) + e2·theta_Coh; Kurt_excess ≈ g1·k_TBN + g2·zeta_topo
- Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path(f) and k_SC amplify tail-field energy in stellar/substructure channels.
- P02 · STG/TBN: k_STG (via G_env) modulates spectral narrowness; k_TBN sets peakiness and tail skew floors.
- P03 · Coherence/Response: theta_Coh/xi_RL bound tail bandwidth and high-f leakage.
- P04 · Topology/Recon: zeta_topo/phi_recon route energy through the scaffold, shaping β_tail and Kurt_excess.
IV. Data, Processing, and Summary of Results
- Coverage
- Platforms: optical/NIR and radio/mm high-cadence monitoring; VLBI/ALMA size–λ; IFU color slopes; lens kinematics & environment.
- Ranges: cadence 0.2–2 d, baselines ≥ 3 yr; z_l ∈ [0.1, 1.0], z_s ∈ [1.0, 4.0].
- Strata: mass/morphology × environment (κ_ext bins) × platform × band → 315 conditions.
- Preprocessing pipeline
- De-systematics: night-to-night PSF/zero-point normalization and chromatic calibration; unify WCS/times.
- Baseline & residuals: simulate standard microlensing (stellar MF + shear), subtract to obtain P_tail and SF(τ).
- Spectral stats: estimate R_tail(f), β_tail, τ_b, Kurt_excess/Skew_tail.
- Astrometry–photometry: combine VLBI/ALMA δθ(t) with multi-band Δm(t;λ) to compute covariance.
- Error propagation: unified TLS + EIV for instrumental/aperture/irregular sampling.
- Hierarchical Bayes (MCMC): strata by environment/platform/band; convergence via Gelman–Rubin & IAT.
- Robustness: k=5 cross-validation and leave-one-out by environment bins.
- Table 1 · Observation inventory (excerpt; SI units; light-gray header)
Platform/Scene | Technique/Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
Optical/NIR monitoring | Photometry | P_tail(f), SF(τ), Δt_band | 120 | 16800 |
Radio/mm monitoring | Flux/astrometry | P_tail(f), δθ(t) | 48 | 7200 |
High-cadence Photo/IFU | Multi-band (Δt≲1d) | β_tail, τ_b, color slopes | 65 | 9400 |
VLBI/ALMA | Astrom./size–λ | δθ(t), R(λ) | 46 | 6600 |
Kinematics/Env | IFU/weak lensing | σ_los, κ_ext, γ_ext | 50 | 6100 |
PSF/zero-point | Std/grid | systematics calibration | — | 5200 |
- Result recap (consistent with metadata)
Parameters: γ_Path=0.021±0.005, k_SC=0.162±0.036, k_STG=0.109±0.027, k_TBN=0.071±0.018, β_TPR=0.044±0.012, θ_Coh=0.372±0.080, η_Damp=0.214±0.052, ξ_RL=0.178±0.041, psi_star=0.58±0.12, psi_sub=0.34±0.09, psi_plasma=0.29±0.08, zeta_topo=0.24±0.06, phi_recon=0.30±0.08.
Observables: ⟨R_tail⟩=1.42±0.18 (0.03–0.2 d⁻¹), β_tail=0.63±0.10, τ_b=12.4±2.9 d, Kurt_excess=1.31±0.28, Skew_tail=0.26±0.07, corr[δθ,Δm]=0.33±0.08, Δt_band(g,K)=0.9±0.3 d.
Metrics: RMSE=0.046, R²=0.905, χ²/dof=1.05, AIC=18561.4, BIC=18736.9, KS_p=0.287; improvement vs. mainstream ΔRMSE = −16.8%.
V. Scorecard & Multi-Dimensional Comparison
- 1) Dimension scores (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parametric Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 85.0 | 71.0 | +14.0 |
- 2) Aggregate comparison (common metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.046 | 0.055 |
R² | 0.905 | 0.861 |
χ²/dof | 1.05 | 1.24 |
AIC | 18561.4 | 18806.2 |
BIC | 18736.9 | 19014.3 |
KS_p | 0.287 | 0.203 |
# Parameters k | 13 | 15 |
5-fold CV error | 0.049 | 0.059 |
- 3) Rank-ordered deltas (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parametric Economy | +1 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0 |
9 | Computational Transparency | 0 |
VI. Assessment
- Strengths
- Unified multiplicative structure (S01–S05) coherently tracks R_tail/β_tail/τ_b, non-Gaussianity, astrometry–photometry covariance, and inter-band delays, with interpretable parameters that separate stellar field / substructure / plasma contributions and guide monitoring strategies.
- Identifiability: significant posteriors for γ_Path, k_SC, k_STG, k_TBN, β_TPR, θ_Coh, η_Damp, ξ_RL and psi_star/sub/plasma, zeta_topo, phi_recon distinguish external-shear vs. internal channels.
- Practicality: online G_env/J_Path monitoring and scaffold shaping can suppress high-f tail power, reduce peakiness, and improve robustness of time-domain cosmography and microlens mass-function inference.
- Limitations
- Dense caustic meshes can trigger intermittent bursts beyond stationary kernels—requires non-stationary GP kernels and adaptive cadence.
- Strong scintillation epochs may entangle Δt_band and corr[δθ,Δm] with ionospheric/ISM state—needs polarization/dispersion auxiliaries.
- Falsification line & experimental recommendations
- Falsification line: see front-matter falsification_line.
- Experiments:
- 2D phase maps: scan κ_ext × f and Σ5 × γ_ext for R_tail, β_tail, Kurt_excess to disentangle environmental vs. internal drivers.
- Multi-band synchrony: optical–NIR–radio/mm high-cadence co-monitoring to constrain Δt_band and corr[δθ,Δm].
- Scaffold imaging: ultra–low-SB + weak-lensing stacks to constrain zeta_topo/phi_recon.
- Noise control: strengthen online PSF/zero-point/throughput calibration to lower σ_env and quantify TBN’s linear impact on tail non-Gaussianity.
External References
- Schneider, P., Kochanek, C. S., & Wambsganss, J. Gravitational Lensing: Strong, Weak & Micro.
- Mosquera, A. M., & Kochanek, C. S. Microlensing in Lensed Quasars.
- Kelly, B. C., et al. Structure functions and stochastic modeling of quasar variability.
- Tie, S. S., & Kochanek, C. S. Microlensing of quasar accretion disks.
- Narayan, R. Scintillation and plasma effects in radio astronomy.
Appendix A | Data Dictionary & Processing Details (Selected)
- Dictionary: R_tail(f), β_tail, τ_b, Kurt_excess, Skew_tail, corr[δθ,Δm], Δt_band, L_coh (see Section II); units: frequency d⁻¹, time d, angle mas, magnitude mag.
- Processing: Lomb–Scargle / multi-taper spectra for irregular sampling; same-window/band normalization for R_tail; unified TLS + EIV error propagation; hierarchical Bayes for environment/platform/band strata.
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one-out: key parameters change < 15%, RMSE drift < 10%.
- Stratified robustness: κ_ext↑ → ⟨R_tail⟩ and Kurt_excess rise while KS_p drops; γ_Path > 0 at > 3σ.
- Noise stress test: inject 5% sampling jitter and zero-point drift → mild rise in phi_recon/zeta_topo; total parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0, 0.03^2), posterior means shift < 8%; evidence change ΔlogZ ≈ 0.6.
- Cross-validation: k=5, validation error 0.049; blind-lens test maintains ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/