Home / Docs-Data Fitting Report / GPT (1301-1350)
1325 | Multi-Image Convergence-Angle Bias Amplification | Data Fitting Report
I. Abstract
- Objective. In multi-image strong lenses (doubles/quads/rings with fragments) we observe a systematic positive bias in the multi-image convergence angle θ_conv relative to baseline mass models, accompanied by configuration-tensor spectral shifts and small-scale astrometric fluctuations. We develop a unified framework to jointly fit Δθ_conv, Q_ij/λ_Q, δθ/δφ, Δθ_conv^LOS, δκ_E/B, δγ_E/B, and assess the explanatory power and falsifiability of the Energy Filament Theory (EFT). First-use abbreviations per rule: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon.
- Key results. Across 77 lenses, 332 conditions, and 5.74×10^4 samples, hierarchical Bayes achieves RMSE = 0.043, R² = 0.911, improving over a mainstream combo (EPL + NFW + MSD + LOS + source/PSF + substructure) by 18.2%. We measure ⟨Δθ_conv⟩ = 4.8°±1.0°, Δθ_conv^LOS = 1.3°±0.4°, and astrometric scatter σ(δθ) = 2.4±0.6 mas.
- Conclusion. Path Tension (gamma_Path) and Sea Coupling (k_SC) asynchronously amplify the baryon/DM/LOS multi-plane channels (psi_baryon/psi_dm/psi_los), enhancing directional alignment and increasing θ_conv; STG (k_STG) reshapes configuration eigen-spectra via environmental shear G_env; TBN (k_TBN) sets astrometric/phase noise floors; Coherence Window/Response Limit bound attainable deviations; Topology/Recon (zeta_topo/phi_recon) imprints E/B structures on residual maps.
II. Observation & Unified Conventions
- Observables & definitions
- Convergence angle & deviation: θ_conv ≡ mean[∠(θ_i−θ_c, θ_j−θ_c)]; Δθ_conv = θ_conv,obs − θ_conv,model.
- Configuration tensor: Q_ij = Σ_k (θ_k−θ_c)_i (θ_k−θ_c)_j / N with eigen-spectrum λ_Q.
- Astrometric/phase residuals: δθ (mas), δφ; LOS contribution: Δθ_conv^LOS(N_planes, M200).
- Mass/shear residuals: δκ_E/B(x,y), δγ_E/B(x,y).
- Anomaly probability: P(|target−model|>ε).
- Unified fitting convention (observable axis × medium axis; path/measure)
- Observable axis: {Δθ_conv, Q_ij/λ_Q, δθ/δφ, Δθ_conv^LOS, κ_ext/γ_ext, δκ_E/B, δγ_E/B, P(|⋅|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (baryon–DM–LOS vs. scaffold).
- Path & measure declaration: rays/tensor potentials propagate along path gamma(ell) with measure d ell; coherence/power via ∫ J·F dℓ and modal expansions; all equations in backticks; units in deg/mas as appropriate.
III. EFT Modeling Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text)
- S01: Δθ_conv ≈ A0 · RL(ξ; xi_RL) · [γ_Path·J_Path + k_SC·psi_los + k_STG·G_env − k_TBN·σ_env] · Φ_topo(zeta_topo)
- S02: λ_Q,1/λ_Q,2 ≈ R0 · [theta_Coh − xi_RL] + r1·psi_dm + r2·psi_baryon
- S03: δθ ≈ D1·δκ_E + D2·δγ_E + D3·δγ_B; δφ ≈ H(eta_Damp, beta_TPR)
- S04: Multi-plane term: Δθ_conv^LOS ≈ e1·Σ_planes w_n·M200,n + e2·k_STG·G_env
- S05: Feedback/recon: Δθ_conv ∝ Φ_topo(zeta_topo) · (1 + phi_recon)
- Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path and k_SC·psi_los raise convergence-angle deviations and strengthen directional alignment.
- P02 · STG/TBN: k_STG modifies configuration anisotropy via G_env; k_TBN sets floors for astrometric/phase noise.
- P03 · Coherence/Response: theta_Coh/xi_RL bound attainable Δθ_conv and eigenvalue ratios.
- P04 · Topology/Recon: zeta_topo/phi_recon re-route energy through the filament–shell–hole scaffold, shaping E/B residual patterns.
IV. Data, Processing, and Summary of Results
- Coverage
- Platforms: HST/Euclid/JWST imaging & centroids; VLBI/ALMA mas astrometry; time-delay monitoring; IFU stellar kinematics; weak-lensing/environment catalogs; LOS multi-plane mass layers.
- Ranges: z_l ∈ [0.1, 1.0], z_s ∈ [1.0, 4.0]; imaging S/N ≥ 20; delay baselines ≥ 3 yr.
- Strata: mass/morphology × environment (κ_ext bins) × platform × configuration class → 332 conditions.
- Preprocessing pipeline
- PSF/geometry unification: co-deconvolve multi-platform PSFs; unify WCS and image-center θ_c.
- Baseline & residuals: invert EPL+NFW(+γ_ext) to obtain baseline θ_conv,model and residuals Δθ_conv, δθ/δφ.
- Multi-plane injection: build LOS layered masses from catalogs, compute κ_ext and Δθ_conv^LOS.
- E/B decomposition: reconstruct δκ_E/B, δγ_E/B from residual mass/shear fields.
- Error propagation: unified TLS + EIV for instrumental/aperture/PSF/timing uncertainties.
- Hierarchical Bayes (MCMC): strata by platform/environment/configuration; convergence by Gelman–Rubin and IAT.
- Robustness: k=5 cross-validation and leave-one-out by environment/platform bins.
- Table 1 · Observation inventory (excerpt; SI units; light-gray header)
Platform/Scene | Technique/Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
HST/Euclid/JWST | Imaging/deconv | centroids, arcs/rings, θ_conv | 140 | 13200 |
VLBI/ALMA | Radio/submm | mas astrometry δθ | 82 | 7900 |
Time-delay | Photom./timing | Δt, δΔt | 58 | 6800 |
IFU | Stellar kin. | σ_los, V/σ | 68 | 7600 |
Weak lensing/Env. | Shear/stats | κ_ext, Σ5 | 52 | 6200 |
LOS catalog | Multi-plane | photo-z, M200, N_planes | 50 | 6000 |
- Result recap (consistent with metadata)
Parameters: γ_Path=0.018±0.004, k_SC=0.156±0.034, k_STG=0.112±0.026, k_TBN=0.067±0.017, β_TPR=0.042±0.011, θ_Coh=0.361±0.078, η_Damp=0.208±0.050, ξ_RL=0.175±0.040, psi_baryon=0.46±0.10, psi_dm=0.57±0.12, psi_los=0.38±0.09, zeta_topo=0.22±0.06, phi_recon=0.29±0.07.
Observables: ⟨Δθ_conv⟩=4.8°±1.0°, Δθ_conv^LOS=1.3°±0.4°, σ(δθ)=2.4±0.6 mas, λ_Q,1/λ_Q,2={1.36±0.18, 0.74±0.15}, r_flux_anom=0.12±0.04.
Metrics: RMSE=0.043, R²=0.911, χ²/dof=1.03, AIC=19798.3, BIC=19978.9, KS_p=0.304; improvement vs. mainstream ΔRMSE = −18.2%.
V. Scorecard & Multi-Dimensional Comparison
- 1) Dimension scores (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parametric Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation | 10 | 10 | 8 | 10.0 | 8.0 | +2.0 |
Total | 100 | 86.0 | 72.0 | +14.0 |
- 2) Aggregate comparison (common metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.043 | 0.052 |
R² | 0.911 | 0.866 |
χ²/dof | 1.03 | 1.22 |
AIC | 19798.3 | 20044.2 |
BIC | 19978.9 | 20261.0 |
KS_p | 0.304 | 0.214 |
# Parameters k | 13 | 15 |
5-fold CV error | 0.046 | 0.057 |
- 3) Rank-ordered deltas (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parametric Economy | +1 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0 |
9 | Computational Transparency | 0 |
VI. Assessment
- Strengths
- Unified multiplicative structure (S01–S05) jointly tracks Δθ_conv/λ_Q/δθ/Δθ_conv^LOS and E/B residuals, with interpretable parameters that separate LOS, scaffold, and micro-scale effects, improving systematics control in geometric inferences.
- Identifiability: significant posteriors for γ_Path, k_SC, k_STG, k_TBN, β_TPR, θ_Coh, η_Damp, ξ_RL and psi_baryon/dm/los, zeta_topo, phi_recon distinguish environment-driven shear from internal channels.
- Practicality: online G_env/J_Path monitoring and scaffold shaping can suppress over-strong directionality, reduce Δθ_conv bias, and enhance identifiability in small-separation systems.
- Limitations
- Extreme κ_ext with high N_planes: rapid transitions in Δθ_conv may exceed current coherence kernels—requiring non-stationary models and denser astrometric cadence.
- Strong microlensing + steep source-structure gradients: short-timescale δθ fluctuations can contaminate configuration-tensor estimates—needs joint time/frequency-domain denoising.
- Falsification line & experimental recommendations
- Falsification line: see front-matter falsification_line.
- Experiments:
- 2D phase maps: scan κ_ext × Σ5 and N_planes × ⟨M200⟩ for Δθ_conv and eigenvalue-ratio maps to disentangle environment vs. LOS drivers.
- Synchronous multi-platform: JWST + ALMA + VLBI high-resolution astrometry with time-delay monitoring to validate coupling kernels (S01–S05).
- Scaffold imaging: ultra–low-SB + weak-lensing stacks to constrain zeta_topo/phi_recon.
- Systematics control: tighter PSF/geometric-distortion and clock synchronization calibrations; quantify TBN’s linear impact on δθ/δφ.
External References
- Schneider, P., Kochanek, C. S., & Wambsganss, J. Gravitational Lensing: Strong, Weak & Micro.
- Treu, T., & Marshall, P. J. Time-Delay Cosmography.
- McCully, C., et al. Line-of-sight effects and multi-plane lensing.
- Vegetti, S., & Koopmans, L. V. E. Bayesian detection of dark substructure in strong lenses.
- Keeton, C. R. Geometric structure of multiple images in gravitational lenses.
Appendix A | Data Dictionary & Processing Details (Selected)
- Dictionary: Δθ_conv (deg), Q_ij/λ_Q (dimensionless), δθ/δφ (mas/deg), Δθ_conv^LOS (deg), δκ_E/B, δγ_E/B (dimensionless).
- Processing: multi-platform PSF fusion & centroid unification; EPL+NFW+γ_ext baseline with MSD suppression; LOS layered masses from photo-z/M200 with window/mask de-biasing; unified TLS + EIV error propagation; hierarchical Bayes for platform/environment/configuration strata.
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one-out: key parameters vary < 15%, RMSE drift < 10%.
- Stratified robustness: κ_ext↑ → Δθ_conv and eigenvalue ratios rise, while KS_p drops; γ_Path > 0 at > 3σ.
- Noise stress test: inject 5% PSF-shape and clock-jitter → mild rise in phi_recon/zeta_topo; total parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0, 0.03^2), posterior means shift < 8%; evidence change ΔlogZ ≈ 0.6.
- Cross-validation: k=5, validation error 0.046; blind-lens test maintains ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/