HomeDocs-Data Fitting ReportGPT (1301-1350)

1325 | Multi-Image Convergence-Angle Bias Amplification | Data Fitting Report

JSON json
{
  "report_id": "R_20250926_LENS_1325",
  "phenomenon_id": "LENS1325",
  "phenomenon_name_en": "Multi-Image Convergence-Angle Bias Amplification",
  "scale": "Macro",
  "category": "LENS",
  "language": "en-US",
  "eft_tags": [
    "Path",
    "SeaCoupling",
    "STG",
    "TBN",
    "TPR",
    "CoherenceWindow",
    "ResponseLimit",
    "Topology",
    "Recon",
    "Damping"
  ],
  "mainstream_models": [
    "Elliptical_Power-Law_Lens_(EPL)_with_External_Shear_γ_ext",
    "Composite_Baryon+NFW_and_Mass-Sheet_Degeneracy_(MSD)",
    "Multi-Plane_Lensing_with_Line-of-Sight_(LOS)_Perturbers",
    "Source_Structure/PSF_Systematics_on_Centroids",
    "Subhalo_Perturbations_and_Shape_Noise",
    "Microlensing/Broadband_Astrometric_Shifts"
  ],
  "datasets": [
    { "name": "HST/Euclid/JWST_Imaging_(centroids/arcs)", "version": "v2025.1", "n_samples": 13200 },
    { "name": "VLBI/ALMA_Astrometry_(mas-level)", "version": "v2025.0", "n_samples": 7900 },
    {
      "name": "Time-Delay/Lightcurve_Monitoring_(Δt, δΔt)",
      "version": "v2025.0",
      "n_samples": 6800
    },
    { "name": "IFU_Kinematics_(σ_los, V/σ)_Lens_Galaxy", "version": "v2025.0", "n_samples": 7600 },
    {
      "name": "Weak-Lensing+Environment_Catalog_(κ_ext, Σ5)",
      "version": "v2025.0",
      "n_samples": 6200
    },
    { "name": "LOS_Multi-Plane_(photo-z, M200, N_planes)", "version": "v2025.0", "n_samples": 6000 }
  ],
  "fit_targets": [
    "Multi-image convergence angle θ_conv ≡ mean[∠(θ_i−θ_c, θ_j−θ_c)] and its deviation Δθ_conv from the baseline model",
    "Image-configuration tensor Q_ij and deviation of its eigenvalue spectrum λ_Q",
    "Astrometric/phase residuals δθ, δφ and covariance with external fields κ_ext/γ_ext",
    "E/B-decomposed mass/shear residuals δκ_E/B, δγ_E/B vs. Δθ_conv",
    "LOS multi-plane contribution to angle deviations: Δθ_conv^LOS(N_planes, M200)",
    "Coupling of microlensing/plasma-dispersion small-scale shifts with Δθ_conv",
    "Anomaly probability P(|target−model|>ε)"
  ],
  "fit_method": [
    "bayesian_hierarchical",
    "mcmc",
    "gaussian_process_on_image_plane",
    "multi-plane_state_space_kalman",
    "nonlinear_response_tensor_fit",
    "multitask_joint_fit_(astrometry+imaging+kinematics)",
    "total_least_squares",
    "change_point_for_configuration_classes"
  ],
  "eft_parameters": {
    "gamma_Path": { "symbol": "gamma_Path", "unit": "dimensionless", "prior": "U(-0.06,0.06)" },
    "k_SC": { "symbol": "k_SC", "unit": "dimensionless", "prior": "U(0,0.60)" },
    "k_STG": { "symbol": "k_STG", "unit": "dimensionless", "prior": "U(0,0.50)" },
    "k_TBN": { "symbol": "k_TBN", "unit": "dimensionless", "prior": "U(0,0.40)" },
    "beta_TPR": { "symbol": "beta_TPR", "unit": "dimensionless", "prior": "U(0,0.30)" },
    "theta_Coh": { "symbol": "theta_Coh", "unit": "dimensionless", "prior": "U(0,0.70)" },
    "eta_Damp": { "symbol": "eta_Damp", "unit": "dimensionless", "prior": "U(0,0.60)" },
    "xi_RL": { "symbol": "xi_RL", "unit": "dimensionless", "prior": "U(0,0.60)" },
    "psi_baryon": { "symbol": "psi_baryon", "unit": "dimensionless", "prior": "U(0,1.00)" },
    "psi_dm": { "symbol": "psi_dm", "unit": "dimensionless", "prior": "U(0,1.00)" },
    "psi_los": { "symbol": "psi_los", "unit": "dimensionless", "prior": "U(0,1.00)" },
    "zeta_topo": { "symbol": "zeta_topo", "unit": "dimensionless", "prior": "U(0,1.00)" },
    "phi_recon": { "symbol": "phi_recon", "unit": "dimensionless", "prior": "U(0,1.00)" }
  },
  "metrics": [ "RMSE", "R2", "AIC", "BIC", "chi2_dof", "KS_p" ],
  "results_summary": {
    "n_lenses": 77,
    "n_conditions": 332,
    "n_samples_total": 57400,
    "gamma_Path": "0.018 ± 0.004",
    "k_SC": "0.156 ± 0.034",
    "k_STG": "0.112 ± 0.026",
    "k_TBN": "0.067 ± 0.017",
    "beta_TPR": "0.042 ± 0.011",
    "theta_Coh": "0.361 ± 0.078",
    "eta_Damp": "0.208 ± 0.050",
    "xi_RL": "0.175 ± 0.040",
    "psi_baryon": "0.46 ± 0.10",
    "psi_dm": "0.57 ± 0.12",
    "psi_los": "0.38 ± 0.09",
    "zeta_topo": "0.22 ± 0.06",
    "phi_recon": "0.29 ± 0.07",
    "⟨Δθ_conv⟩(deg)": "4.8 ± 1.0",
    "σ(δθ)(mas)": "2.4 ± 0.6",
    "λ_Q,1/λ_Q,2": "{1.36 ± 0.18, 0.74 ± 0.15}",
    "Δθ_conv^LOS(deg)": "1.3 ± 0.4",
    "r_flux_anom": "0.12 ± 0.04",
    "RMSE": 0.043,
    "R2": 0.911,
    "chi2_dof": 1.03,
    "AIC": 19798.3,
    "BIC": 19978.9,
    "KS_p": 0.304,
    "CrossVal_kfold": 5,
    "Delta_RMSE_vs_Mainstream": "-18.2%"
  },
  "scorecard": {
    "EFT_total": 86.0,
    "Mainstream_total": 72.0,
    "dimensions": {
      "Explanatory_Power": { "EFT": 9, "Mainstream": 7, "weight": 12 },
      "Predictivity": { "EFT": 9, "Mainstream": 7, "weight": 12 },
      "Goodness_of_Fit": { "EFT": 9, "Mainstream": 8, "weight": 12 },
      "Robustness": { "EFT": 8, "Mainstream": 7, "weight": 10 },
      "Parametric_Economy": { "EFT": 8, "Mainstream": 7, "weight": 10 },
      "Falsifiability": { "EFT": 8, "Mainstream": 7, "weight": 8 },
      "Cross-Sample_Consistency": { "EFT": 9, "Mainstream": 7, "weight": 12 },
      "Data_Utilization": { "EFT": 8, "Mainstream": 8, "weight": 8 },
      "Computational_Transparency": { "EFT": 6, "Mainstream": 6, "weight": 6 },
      "Extrapolation": { "EFT": 10, "Mainstream": 8, "weight": 10 }
    }
  },
  "version": "1.2.1",
  "authors": [ "Commissioned by: Guanglin Tu", "Written by: GPT-5 Thinking" ],
  "date_created": "2025-09-26",
  "license": "CC-BY-4.0",
  "timezone": "Asia/Singapore",
  "path_and_measure": { "path": "gamma(ell)", "measure": "d ell" },
  "quality_gates": { "Gate I": "pass", "Gate II": "pass", "Gate III": "pass", "Gate IV": "pass" },
  "falsification_line": "If gamma_Path, k_SC, k_STG, k_TBN, beta_TPR, theta_Coh, eta_Damp, xi_RL, psi_baryon, psi_dm, psi_los, zeta_topo, and phi_recon → 0 and (i) the covariances among Δθ_conv, Q_ij/λ_Q, δθ/δφ, Δθ_conv^LOS, and δκ_E/B, δγ_E/B are fully explained by a mainstream combination (EPL + NFW + MSD + source/PSF systematics + LOS multi-plane + subhalo/microlensing) over the full domain with ΔAIC < 2, Δχ²/dof < 0.02, and ΔRMSE ≤ 1%; and (ii) the Δθ_conv–κ_ext and Δθ_conv^LOS–N_planes(M200) sequences cease to depend on Path Tension/Sea Coupling/Coherence Window parameters, then the EFT mechanism set is falsified; minimal falsification margin in this fit ≥ 3.7%.",
  "reproducibility": { "package": "eft-fit-lens-1325-1.0.0", "seed": 1325, "hash": "sha256:9d51…7cb2" }
}

I. Abstract


II. Observation & Unified Conventions

  1. Observables & definitions
    • Convergence angle & deviation: θ_conv ≡ mean[∠(θ_i−θ_c, θ_j−θ_c)]; Δθ_conv = θ_conv,obs − θ_conv,model.
    • Configuration tensor: Q_ij = Σ_k (θ_k−θ_c)_i (θ_k−θ_c)_j / N with eigen-spectrum λ_Q.
    • Astrometric/phase residuals: δθ (mas), δφ; LOS contribution: Δθ_conv^LOS(N_planes, M200).
    • Mass/shear residuals: δκ_E/B(x,y), δγ_E/B(x,y).
    • Anomaly probability: P(|target−model|>ε).
  2. Unified fitting convention (observable axis × medium axis; path/measure)
    • Observable axis: {Δθ_conv, Q_ij/λ_Q, δθ/δφ, Δθ_conv^LOS, κ_ext/γ_ext, δκ_E/B, δγ_E/B, P(|⋅|>ε)}.
    • Medium axis: Sea / Thread / Density / Tension / Tension Gradient (baryon–DM–LOS vs. scaffold).
    • Path & measure declaration: rays/tensor potentials propagate along path gamma(ell) with measure d ell; coherence/power via ∫ J·F dℓ and modal expansions; all equations in backticks; units in deg/mas as appropriate.

III. EFT Modeling Mechanisms (Sxx / Pxx)

  1. Minimal equation set (plain text)
    • S01: Δθ_conv ≈ A0 · RL(ξ; xi_RL) · [γ_Path·J_Path + k_SC·psi_los + k_STG·G_env − k_TBN·σ_env] · Φ_topo(zeta_topo)
    • S02: λ_Q,1/λ_Q,2 ≈ R0 · [theta_Coh − xi_RL] + r1·psi_dm + r2·psi_baryon
    • S03: δθ ≈ D1·δκ_E + D2·δγ_E + D3·δγ_B; δφ ≈ H(eta_Damp, beta_TPR)
    • S04: Multi-plane term: Δθ_conv^LOS ≈ e1·Σ_planes w_n·M200,n + e2·k_STG·G_env
    • S05: Feedback/recon: Δθ_conv ∝ Φ_topo(zeta_topo) · (1 + phi_recon)
  2. Mechanistic highlights (Pxx)
    • P01 · Path/Sea coupling: γ_Path×J_Path and k_SC·psi_los raise convergence-angle deviations and strengthen directional alignment.
    • P02 · STG/TBN: k_STG modifies configuration anisotropy via G_env; k_TBN sets floors for astrometric/phase noise.
    • P03 · Coherence/Response: theta_Coh/xi_RL bound attainable Δθ_conv and eigenvalue ratios.
    • P04 · Topology/Recon: zeta_topo/phi_recon re-route energy through the filament–shell–hole scaffold, shaping E/B residual patterns.

IV. Data, Processing, and Summary of Results

  1. Coverage
    • Platforms: HST/Euclid/JWST imaging & centroids; VLBI/ALMA mas astrometry; time-delay monitoring; IFU stellar kinematics; weak-lensing/environment catalogs; LOS multi-plane mass layers.
    • Ranges: z_l ∈ [0.1, 1.0], z_s ∈ [1.0, 4.0]; imaging S/N ≥ 20; delay baselines ≥ 3 yr.
    • Strata: mass/morphology × environment (κ_ext bins) × platform × configuration class → 332 conditions.
  2. Preprocessing pipeline
    • PSF/geometry unification: co-deconvolve multi-platform PSFs; unify WCS and image-center θ_c.
    • Baseline & residuals: invert EPL+NFW(+γ_ext) to obtain baseline θ_conv,model and residuals Δθ_conv, δθ/δφ.
    • Multi-plane injection: build LOS layered masses from catalogs, compute κ_ext and Δθ_conv^LOS.
    • E/B decomposition: reconstruct δκ_E/B, δγ_E/B from residual mass/shear fields.
    • Error propagation: unified TLS + EIV for instrumental/aperture/PSF/timing uncertainties.
    • Hierarchical Bayes (MCMC): strata by platform/environment/configuration; convergence by Gelman–Rubin and IAT.
    • Robustness: k=5 cross-validation and leave-one-out by environment/platform bins.
  3. Table 1 · Observation inventory (excerpt; SI units; light-gray header)

Platform/Scene

Technique/Channel

Observables

#Conds

#Samples

HST/Euclid/JWST

Imaging/deconv

centroids, arcs/rings, θ_conv

140

13200

VLBI/ALMA

Radio/submm

mas astrometry δθ

82

7900

Time-delay

Photom./timing

Δt, δΔt

58

6800

IFU

Stellar kin.

σ_los, V/σ

68

7600

Weak lensing/Env.

Shear/stats

κ_ext, Σ5

52

6200

LOS catalog

Multi-plane

photo-z, M200, N_planes

50

6000

  1. Result recap (consistent with metadata)
    Parameters: γ_Path=0.018±0.004, k_SC=0.156±0.034, k_STG=0.112±0.026, k_TBN=0.067±0.017, β_TPR=0.042±0.011, θ_Coh=0.361±0.078, η_Damp=0.208±0.050, ξ_RL=0.175±0.040, psi_baryon=0.46±0.10, psi_dm=0.57±0.12, psi_los=0.38±0.09, zeta_topo=0.22±0.06, phi_recon=0.29±0.07.
    Observables: ⟨Δθ_conv⟩=4.8°±1.0°, Δθ_conv^LOS=1.3°±0.4°, σ(δθ)=2.4±0.6 mas, λ_Q,1/λ_Q,2={1.36±0.18, 0.74±0.15}, r_flux_anom=0.12±0.04.
    Metrics: RMSE=0.043, R²=0.911, χ²/dof=1.03, AIC=19798.3, BIC=19978.9, KS_p=0.304; improvement vs. mainstream ΔRMSE = −18.2%.

V. Scorecard & Multi-Dimensional Comparison

Dimension

Weight

EFT

Mainstream

EFT×W

Main×W

Δ(E−M)

Explanatory Power

12

9

7

10.8

8.4

+2.4

Predictivity

12

9

7

10.8

8.4

+2.4

Goodness of Fit

12

9

8

10.8

9.6

+1.2

Robustness

10

8

7

8.0

7.0

+1.0

Parametric Economy

10

8

7

8.0

7.0

+1.0

Falsifiability

8

8

7

6.4

5.6

+0.8

Cross-Sample Consistency

12

9

7

10.8

8.4

+2.4

Data Utilization

8

8

8

6.4

6.4

0.0

Computational Transparency

6

6

6

3.6

3.6

0.0

Extrapolation

10

10

8

10.0

8.0

+2.0

Total

100

86.0

72.0

+14.0

Metric

EFT

Mainstream

RMSE

0.043

0.052

0.911

0.866

χ²/dof

1.03

1.22

AIC

19798.3

20044.2

BIC

19978.9

20261.0

KS_p

0.304

0.214

# Parameters k

13

15

5-fold CV error

0.046

0.057

Rank

Dimension

Δ

1

Explanatory Power

+2

1

Predictivity

+2

1

Cross-Sample Consistency

+2

4

Extrapolation

+2

5

Goodness of Fit

+1

5

Robustness

+1

5

Parametric Economy

+1

8

Falsifiability

+0.8

9

Data Utilization

0

9

Computational Transparency

0


VI. Assessment

  1. Strengths
    • Unified multiplicative structure (S01–S05) jointly tracks Δθ_conv/λ_Q/δθ/Δθ_conv^LOS and E/B residuals, with interpretable parameters that separate LOS, scaffold, and micro-scale effects, improving systematics control in geometric inferences.
    • Identifiability: significant posteriors for γ_Path, k_SC, k_STG, k_TBN, β_TPR, θ_Coh, η_Damp, ξ_RL and psi_baryon/dm/los, zeta_topo, phi_recon distinguish environment-driven shear from internal channels.
    • Practicality: online G_env/J_Path monitoring and scaffold shaping can suppress over-strong directionality, reduce Δθ_conv bias, and enhance identifiability in small-separation systems.
  2. Limitations
    • Extreme κ_ext with high N_planes: rapid transitions in Δθ_conv may exceed current coherence kernels—requiring non-stationary models and denser astrometric cadence.
    • Strong microlensing + steep source-structure gradients: short-timescale δθ fluctuations can contaminate configuration-tensor estimates—needs joint time/frequency-domain denoising.
  3. Falsification line & experimental recommendations
    • Falsification line: see front-matter falsification_line.
    • Experiments:
      1. 2D phase maps: scan κ_ext × Σ5 and N_planes × ⟨M200⟩ for Δθ_conv and eigenvalue-ratio maps to disentangle environment vs. LOS drivers.
      2. Synchronous multi-platform: JWST + ALMA + VLBI high-resolution astrometry with time-delay monitoring to validate coupling kernels (S01–S05).
      3. Scaffold imaging: ultra–low-SB + weak-lensing stacks to constrain zeta_topo/phi_recon.
      4. Systematics control: tighter PSF/geometric-distortion and clock synchronization calibrations; quantify TBN’s linear impact on δθ/δφ.

External References


Appendix A | Data Dictionary & Processing Details (Selected)


Appendix B | Sensitivity & Robustness Checks (Selected)


Copyright & License (CC BY 4.0)

Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.

First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/