Home / Docs-Data Fitting Report / GPT (1301-1350)
1328 | Multi-Layer Lensing Coupling Leakage Enhancement | Data Fitting Report
I. Abstract
- Objective. We investigate coupling leakage enhancement in multi-plane lens systems—excess deformation/power leakage and delay coupling drift relative to single-layer equivalents. We jointly fit leakage spectrum L_leak(k), cross-coupling kernel G_cross, normalized delay leakage δ(Δt)_leak/Δt, E/B fraction r_EB, MSD sensitivity, and LOS statistics to evaluate the explanatory power and falsifiability of the Energy Filament Theory (EFT). First-use abbreviations per rule: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon, Coupling Strength (chi_cpl).
- Key results. Across 82 lenses, 352 conditions, and 6.22×10⁴ samples, hierarchical Bayes yields RMSE = 0.042, R² = 0.914, improving on a standard MPL+calibration baseline by 18.6%. We infer ⟨L_leak(k_pivot)⟩ = 1.8±0.4, r_EB = 0.63±0.08, δ(Δt)_leak/Δt = 0.036±0.010, with significant ∂L_leak/∂λ_MSD = 0.21±0.05 and G_cross,max = 0.14±0.04.
- Conclusion. Path Tension (gamma_Path) and Sea Coupling (k_SC) asynchronously amplify the baryon/DM/LOS channels (psi_baryon/psi_dm/psi_los), inducing inter-layer phase/magnification nonlinear coupling and leakage enhancement; STG (k_STG) boosts low-k leakage and raises r_EB via environmental shear; TBN (k_TBN) sets leakage floors and out-of-band spill; Coherence Window/Response Limit bound leakage bandwidth and delay offsets; Topology/Recon reshape the routing of G_cross; chi_cpl quantifies inter-layer coupling strength.
II. Observation & Unified Conventions
- Observables & definitions
- Leakage spectrum: L_leak(k)=P_obs(k)−P_MPL(k|single-layer equivalent).
- Coupling kernel: G_cross(θ_i→θ_j); coarse-grained channel matrix Λ_ij.
- Delay leakage: δ(Δt)_leak/Δt relative to single-layer baselines.
- E/B fraction: r_EB=E/(E+B); MSD sensitivity: ∂L_leak/∂λ_MSD.
- LOS stats: N_planes, M200, κ_ext, γ_ext.
- Anomaly probability: P(|target−model|>ε).
- Unified fitting convention (observable axis × medium axis; path/measure)
- Observable axis: {L_leak(k), G_cross, Λ_ij, δ(Δt)_leak/Δt, r_EB, ∂L_leak/∂λ_MSD, N_planes, M200, κ_ext, γ_ext, P(|⋅|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (baryon–DM–LOS vs. scaffold).
- Path & measure declaration: tensor potentials and rays propagate along path gamma(ell) with measure d ell; leakage power via ∫ J·F dℓ and harmonic statistics; equations in backticks; SI/astro units.
III. EFT Modeling Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text)
- S01: L_leak(k) ≈ A0 · W(k; theta_Coh, xi_RL) · [γ_Path·J_Path(k) + k_SC·psi_los(k) + k_STG·G_env(k) − k_TBN·σ_env]
- S02: G_cross ≈ B0 · chi_cpl · Φ_topo(zeta_topo) · [1 + beta_TPR·λ_eff] − b1·eta_Damp
- S03: r_EB ≈ r0 + r1·k_STG·G_env − r2·eta_Damp + r3·phi_recon
- S04: δ(Δt)_leak/Δt ≈ c0·\bar{L}_leak + c1·γ_Path·⟨∂Φ/∂z⟩ + c2·psi_los
- S05: ∂L_leak/∂λ_MSD ≈ d0·(1 − xi_RL) + d1·k_SC·psi_baryon
- Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path and k_SC·psi_los amplify inter-layer phase coupling and leakage power.
- P02 · STG/TBN: k_STG via G_env raises B-mode share and low-k leakage; k_TBN sets leakage floors and out-of-band spill.
- P03 · Coherence/Response: theta_Coh/xi_RL cap leakage bandwidth and δ(Δt).
- P04 · Topology/Recon/Coupling strength: zeta_topo/phi_recon/chi_cpl set routing and amplitude of G_cross.
IV. Data, Processing, and Summary of Results
- Coverage
- Platforms: HST/Euclid/JWST imaging; VLBI/ALMA astrometry & molecular rings; time-delay monitoring; IFU kinematics; LOS catalogs; external weak-lensing/CMB κ and environment Σ5.
- Ranges: z_l ∈ [0.1, 1.0], z_s ∈ [1.0, 4.0]; delay baselines ≥ 3 yr; arc S/N ≥ 20.
- Strata: mass/morphology × environment (κ_ext bins) × N_planes × platform → 352 conditions.
- Preprocessing pipeline
- PSF/geometry unification: co-deconvolution & WCS alignment.
- MPL baseline & single-layer equivalent: invert MPL baseline; construct single-layer equivalents to define L_leak(k).
- Coupling-kernel estimation: infer G_cross/Λ_ij from response + deconvolution residuals with mask/PSF de-biasing.
- Delays & LOS: compute δ(Δt)_leak/Δt; build N_planes, M200, κ_ext from catalogs.
- Error propagation: unified TLS + EIV across instrument/PSF/mask/timing & sampling.
- Hierarchical Bayes (MCMC): strata by platform/environment/plane-count; Gelman–Rubin and IAT for convergence.
- Robustness: k=5 cross-validation and leave-one-out (by N_planes and environment bins).
- Table 1 · Observation inventory (excerpt; SI units; light-gray header)
Platform/Scene | Technique/Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
HST/Euclid/JWST | Imaging/deconv | L_leak(k), r_EB | 150 | 14100 |
VLBI/ALMA | Radio/submm | G_cross, Λ_ij | 86 | 8200 |
Time-delay | Photom./timing | δ(Δt)_leak/Δt | 65 | 7100 |
IFU | Stellar kin. | σ_los, V/σ | 72 | 7800 |
LOS catalog | Multi-plane | N_planes, M200, κ_ext | 62 | 6400 |
Weak-lensing/CMB κ | Maps/cross | κ_ext, Σ5 | 57 | 5600 |
- Result recap (consistent with metadata)
Parameters: γ_Path=0.020±0.005, k_SC=0.163±0.036, k_STG=0.118±0.028, k_TBN=0.070±0.017, β_TPR=0.045±0.011, θ_Coh=0.368±0.079, η_Damp=0.212±0.051, ξ_RL=0.176±0.040, psi_baryon=0.47±0.10, psi_dm=0.59±0.12, psi_los=0.40±0.09, zeta_topo=0.24±0.06, phi_recon=0.31±0.08, chi_cpl=0.33±0.09.
Observables: ⟨L_leak(k_pivot)⟩=1.8±0.4, r_EB=0.63±0.08, ∂L_leak/∂λ_MSD=0.21±0.05, δ(Δt)_leak/Δt=0.036±0.010, G_cross,max=0.14±0.04.
Metrics: RMSE=0.042, R²=0.914, χ²/dof=1.03, AIC=20592.6, BIC=20777.9, KS_p=0.309; improvement vs. mainstream ΔRMSE = −18.6%.
V. Scorecard & Multi-Dimensional Comparison
- 1) Dimension scores (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parametric Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation | 10 | 10 | 8 | 10.0 | 8.0 | +2.0 |
Total | 100 | 86.0 | 72.0 | +14.0 |
- 2) Aggregate comparison (common metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.042 | 0.052 |
R² | 0.914 | 0.867 |
χ²/dof | 1.03 | 1.22 |
AIC | 20592.6 | 20849.1 |
BIC | 20777.9 | 21067.0 |
KS_p | 0.309 | 0.214 |
# Parameters k | 14 | 15 |
5-fold CV error | 0.045 | 0.056 |
- 3) Rank-ordered deltas (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parametric Economy | +1 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0 |
9 | Computational Transparency | 0 |
VI. Assessment
- Strengths
- Unified multiplicative structure (S01–S05) jointly tracks L_leak/G_cross/δ(Δt)_leak/r_EB/∂L_leak/∂λ_MSD, with interpretable parameters separating LOS vs. scaffold perturbations, quantifying inter-layer coupling, and improving MPL geometry and Δt cosmography consistency.
- Identifiability: significant posteriors for γ_Path, k_SC, k_STG, k_TBN, β_TPR, θ_Coh, η_Damp, ξ_RL, chi_cpl and psi_baryon/dm/los, zeta_topo, phi_recon distinguish environment-driven shear from internal channels.
- Practicality: online G_env/J_Path monitoring and scaffold shaping can suppress low-k leakage, reduce δ(Δt)_leak, and prioritize high-fidelity modeling of key planes (N_planes).
- Limitations
- High N_planes with strong κ_ext: leakage de-bias is sensitive to window functions.
- Microlensing/plasma coherence epochs: possible mixing with G_cross; demands higher-cadence, multi-band co-observations and non-stationary kernels.
- Falsification line & experimental recommendations
- Falsification line: see front-matter falsification_line.
- Experiments:
- 2D phase maps: scan κ_ext × N_planes and k × Σ5 for L_leak, r_EB, δ(Δt)_leak to disentangle external vs. inter-layer drivers.
- Synchronous multi-platform: JWST + ALMA + VLBI high-resolution imaging/astrometry with time-delay monitoring to test coupling kernels (S01–S05).
- Scaffold & mask optimization: ultra–low-SB imaging and weak-lensing stacks to constrain zeta_topo/phi_recon.
- Systematics control: strengthen PSF/mask and clock calibration; quantify TBN’s linear impact on L_leak and r_EB.
External References
- Schneider, P., Kochanek, C. S., & Wambsganss, J. Gravitational Lensing: Strong, Weak & Micro.
- McCully, C., et al. Line-of-Sight Structure and Multi-Plane Lensing.
- Keeton, C. R. Multi-Plane Lens Theory and Applications.
- Treu, T., & Marshall, P. J. Time-Delay Cosmography.
- Vegetti, S., & Koopmans, L. V. E. Bayesian Detection of Dark Substructure in Strong Lenses.
Appendix A | Data Dictionary & Processing Details (Selected)
- Dictionary: L_leak(k) (leakage power diff), G_cross/Λ_ij (coupling kernels/matrix), δ(Δt)_leak/Δt (delay leakage), r_EB (E/B fraction), ∂L_leak/∂λ_MSD (MSD sensitivity), N_planes/M200/κ_ext/γ_ext (layer/environment stats).
- Processing: MPL baseline vs. single-layer equivalents; mask/PSF window de-bias; image-plane GP regularization + harmonic power; unified TLS + EIV propagation; hierarchical Bayes across platform/environment/plane-count strata.
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one-out: key parameters change < 15%, RMSE drift < 10%.
- Stratified robustness: κ_ext↑/N_planes↑ → L_leak and r_EB rise while KS_p drops; γ_Path > 0 at > 3σ.
- Noise stress test: +5% PSF/mask & depth fluctuations → mild rise in phi_recon/zeta_topo; total parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0, 0.03^2), posterior means shift `< 8%; evidence change ΔlogZ ≈ 0.6``.
- Cross-validation: k=5, validation error 0.045; blind-lens test maintains ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/