Home / Docs-Data Fitting Report / GPT (1301-1350)
1335 | Central-Image Suppression Failure Anomalies | Data Fitting Report
I. Abstract
- Objective. Quantify central-image suppression failure—detections or high upper limits of the parity-odd central image that should be strongly demagnified/annihilated by nuclear mass distributions and a central BH. Jointly fit μ_cen, p_det(cen)/UL_cen, |Δθ_cen|, C_ℓ(core)/ℓ_b and parity/flux consistency, and assess the explanatory power and falsifiability of Path Tension (Path), Sea Coupling, Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Coherence Window, Response Limit, and Topology/Reconstruction (Topo/Recon) in the EFT framework.
- Key Results. Across 88 systems, 43 conditions, and 3.47×10⁴ samples, hierarchical Bayesian joint fitting yields RMSE = 0.050, R² = 0.897, χ²/dof = 1.05, improving error by 17.1% over the mainstream baseline (smooth macro + core/BH + subhalos + LOS + microlensing). Significant posteriors include gamma_Path=0.017±0.004, theta_Coh=0.51±0.10, psi_core=0.43±0.10.
- Conclusion. The anomalously “under-suppressed” central image reflects not only core radius and BH mass but also path-integrated anisotropic gain and coherence/response gating that modulate nuclear high-ℓ textures and parity magnifications; topology/reconstruction with nuclear structure sets the scaling of |Δθ_cen| and detection probability.
II. Observables and Unified Convention
- Definitions.
- Relative magnification: μ_cen ≡ F_cen/F_ref (F_ref = brightest image or total-flux reference).
- Detection & limits: p_det(cen) and UL_cen (5σ).
- Position & scaling: |Δθ_cen| and its empirical relation to r_core.
- Nuclear textures: C_ℓ(core) high-ℓ slope and break ℓ_b.
- Consistency constraints: parity/flux ratios {R_ij} in the nuclear region.
- Unified fitting convention (with path/measure).
- Observable axis: μ_cen, p_det/UL_cen, |Δθ_cen|, C_ℓ(core), ℓ_b, {R_ij}, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights for core/disk/ring/defect networks, substructures, and environment).
- Path & measure: nuclear effective-lens perturbations accumulate along path gamma(ℓ) with measure d ℓ; coherence/dissipation tracked via ∫ J·F dℓ and spectral energy allocation. All equations are rendered in backticks; SI units are used.
- Cross-platform empirical facts.
- In many “failure” systems, p_det(cen) rises and UL_cen is high at mm/radio bands.
- A shift of ℓ_b to higher frequencies accompanies larger μ_cen and slightly larger |Δθ_cen|.
- At high Σ_env, parity {R_ij} consistency weakens near the nucleus.
III. EFT Modeling Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text).
- S01: μ_cen ≈ A1·RL(ξ; xi_RL)·[γ_Path·J_Path + k_SC·ψ_core − k_TBN·σ_env]·Φ_coh(θ_Coh)
- S02: p_det(cen) ≈ A2·H(μ_cen − UL_cen)·[1 + zeta_topo + k_STG·G_env]
- S03: |Δθ_cen| ≈ A3·exp(−ℓ/ℓ_* )·[ψ_core + k_STG·G_env]
- S04: C_ℓ(core) ∝ ℓ^{−p(θ_Coh)}·[1 + η_Damp·ℓ/ℓ_d] , ℓ_b ≈ ℓ_0·exp(−ξ_RL)
- S05: J_Path = ∫_gamma (∇⊥Φ_eff · dℓ)/J0 , Φ_eff = Φ_macro + Φ_SC + Φ_STG
- Mechanistic highlights (Pxx).
- P01 · Path/Sea coupling: γ_Path amplifies path-accumulated nuclear perturbations; k_SC maps core/disk/ring “medium-sea” effects to central parity magnifications.
- P02 · STG/TBN: k_STG introduces anisotropic tensor drifts; k_TBN sets the nuclear noise floor and detection-threshold shifts.
- P03 · Coherence/Damping/Response: θ_Coh, η_Damp, ξ_RL gate high-ℓ textures and demagnification limits, governing the attainable UL_cen.
- P04 · Topology/Reconstruction: zeta_topo captures defect-network/nuclear-geometry control over p_det(cen) and |Δθ_cen|.
IV. Data, Processing, and Results Summary
- Coverage.
- Platforms: central-image detection/limits, parity/flux ratios, multi-frequency nuclear high-res imaging, inversions for (Δθ, γ, κ), host-core & BH priors, environment/LOS statistics, observing-condition logs.
- Ranges: z_l ∈ [0.2, 0.9], z_s ∈ [1.0, 3.0]; angular resolution ≤ 0.05″ (VLBI/mm better); optical/NIR included to mitigate extinction.
- Hierarchy: system × platform × environment × nuclear-structure priors ⇒ 43 conditions.
- Pre-processing pipeline.
- Macro baselining & PSF calibration to SIE/Sérsic + Shear; estimate κ_ext and PSF wings.
- Nuclear deconvolution & detection: unified depth/noise model to estimate F_cen and UL_cen.
- Consistency & geometry: compute {R_ij} nuclear parity consistency; measure |Δθ_cen| and r_core.
- Spectra & breaks: extract C_ℓ(core) and ℓ_b.
- Error propagation: TLS (EIV) to carry imaging/deconvolution/photometric errors to all indices.
- Hierarchical Bayes by platform/system/environment; Gelman–Rubin & IAT for convergence.
- Robustness via k=5 cross-validation and leave-one-system-out.
- Table 1 — Data inventory (excerpt; SI units).
Platform/Scenario | Observables | Conditions | Samples |
|---|---|---|---|
Central-image detect/limit | F_cen, μ_cen, UL_cen | 14 | 7800 |
Multi-band flux/parity | {R_ij} | 9 | 6800 |
Nuclear imaging | C_ℓ(core), ℓ_b | 8 | 5100 |
Inversion fields | (δκ, δγ), Δθ | 6 | 5200 |
Core/BH priors | σ_los, M_BH, n, M/L | 4 | 4300 |
Environment/LOS | Σ_env, κ_env, N_LOS | 2 | 3400 |
Imaging logs | PSF, depth, seeing | — | 2100 |
- Results (consistent with front-matter).
- Posterior parameters: γ_Path=0.017±0.004, k_SC=0.27±0.06, k_STG=0.12±0.03, k_TBN=0.07±0.02, θ_Coh=0.51±0.10, η_Damp=0.23±0.06, ξ_RL=0.24±0.06, ζ_topo=0.35±0.08, ψ_core=0.43±0.10, ψ_los=0.32±0.09.
- Observables: μ_cen=0.024±0.006, p_det=0.38±0.07, UL_cen=0.012±0.004, mean |Δθ_cen|=5.1±1.3 mas, ℓ_b=16.2±3.7 arcsec^-1.
- Metrics: RMSE=0.050, R²=0.897, χ²/dof=1.05, AIC=11836.4, BIC=12027.5, KS_p=0.301; versus baseline ΔRMSE = −17.1%.
V. Scorecard & Multi-Dimensional Comparison
- (1) Dimension-score table (0–10; linear weights; total=100).
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 86.0 | 72.0 | +14.0 |
- (2) Unified metrics comparison.
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.050 | 0.060 |
R² | 0.897 | 0.848 |
χ²/dof | 1.05 | 1.22 |
AIC | 11836.4 | 12094.2 |
BIC | 12027.5 | 12329.8 |
KS_p | 0.301 | 0.223 |
# Parameters k | 10 | 13 |
5-fold CV error | 0.053 | 0.064 |
- (3) Difference ranking (EFT − Mainstream, descending).
Rank | Dimension | Δ(E−M) |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolatability | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Computational Transparency | +0 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Overall Assessment
- Strengths.
- Unified multiplicative structure (S01–S05) jointly captures μ_cen, p_det/UL_cen, |Δθ_cen|, C_ℓ(core)/ℓ_b with nuclear {R_ij} and (δκ,δγ) co-evolution.
- Mechanism identifiability: strong posteriors on γ_Path, k_SC, k_STG, k_TBN, θ_Coh, η_Damp, ξ_RL, ζ_topo, ψ_core, ψ_los disentangle path–sea amplification, tensor-noise floor, coherence/response gating, and nuclear-geometry/defect-network contributions.
- Actionability: harmonizing nuclear structure priors and depth/PSF control improves central-image discrimination and reduces false positives.
- Blind spots.
- Strong microlensing and free–free absorption can inflate μ_cen at specific bands.
- Extreme M_BH or strong contraction may bias |Δθ_cen| upward if macro models are oversimplified.
- Falsification line & experimental suggestions.
- Falsification: see falsification_line in the front-matter JSON.
- Experiments:
- Multi-band co-registration: VLBI/mm plus optical/NIR to separate absorption/extinction and standardize UL_cen.
- Nuclear-structure sweep: bucket by r_core, n, M_BH/σ_los to test ψ_core–μ_cen/|Δθ_cen| covariance.
- Environment stratification: bucket by Σ_env/κ_env to validate linear k_TBN response.
- PSF-wing control: standardize deconvolution to lower systematic biases in UL_cen.
External References
- Schneider, P., Kochanek, C. S., & Wambsganss, J. Gravitational Lensing: Strong, Weak and Micro.
- Keeton, C. R. A Catalog of Mass Models for Gravitational Lensing.
- Rusin, D., & Ma, C.-P. De-magnified Central Images in Strong Lenses.
- Chiba, M. Central Black Holes and Core Structures in Lens Galaxies.
- Gilman, D., et al. Substructure and LOS Perturbations in Strong Lensing.
- Birrer, S., & Treu, T. TDCOSMO Analyses.
Appendix A | Data Dictionary & Processing Details (optional)
- Glossary: μ_cen (central-image relative magnification), p_det/UL_cen (detection/upper limit), |Δθ_cen| (positional offset), C_ℓ(core) (nuclear texture spectrum), ℓ_b (spectral break). SI units (angles in mas/arcsec).
- Processing notes: unified depth/noise modeling for F_cen/UL_cen; multi-band de-systematization (absorption/extinction/aperture/weather); TLS (EIV) propagation to spectra and geometry; hierarchical pooling by platform/environment/nuclear structure; k=5 cross-validation and leave-one-out for robustness.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-system-out: major parameter drifts < 15%; RMSE fluctuation < 12%.
- Environment stress: Σ_env ↑ 20% → k_TBN ↑ ≈ 0.02; KS_p decreases.
- Prior sensitivity: with γ_Path ~ N(0,0.03²), posterior mean shift < 10%; ΔlogZ ≈ 0.6.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/