Home / Docs-Data Fitting Report / GPT (1301-1350)
1338 | Ring-Image Polarization Alignment & Phase-Locking | Data Fitting Report
I. Abstract
- Objective. On Einstein rings/arcs, quantify polarization alignment and phase-locking—azimuthal alignment to the shear direction (A_psi, L_phi), E/B-mode asymmetry (R_EB) and spectral break (ℓ_b)—and assess the explanatory power and falsifiability of EFT mechanisms: Path Tension, Sea Coupling, Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Coherence Window, Response Limit, and Topology/Reconstruction.
- Key Results. Across 74 systems, 41 conditions, and 3.01×10⁴ samples, hierarchical Bayesian spatio-temporal fitting achieves RMSE=0.050, R²=0.898, χ²/dof=1.05, improving error by 17.0% versus the mainstream (smooth macro + subhalos + LOS + static microlensing + scalar transfer). Significant posteriors: gamma_Path=0.015±0.004, theta_Coh=0.52±0.10, k_STG=0.11±0.03, xi_RL=0.24±0.06.
- Conclusion. Ring-image polarization locking is not fully explained by intrinsic source fields or LOS Faraday terms; path-integrated anisotropic gain and medium-sea coupling amplify polarization tensors, while coherence/response gating sets E/B power partition and ℓ_b. Topology/reconstruction stabilizes S_t and boosts A_psi.
II. Observables and Unified Convention
- Definitions.
- Alignment: A_psi ≡ ⟨cos[2(ψ−ψ_ref)]⟩ with ψ_ref the tangential or macro-shear reference.
- Phase-lock: L_phi ≡ |⟨e^{i2(ψ−φ_γ)}⟩| measures locking to shear orientation φ_γ.
- Polarization fraction: Π ≡ √(Q^2+U^2)/I.
- E/B modes: spin-2 transform of IQU → R_EB ≡ P_E/P_B and break ℓ_b.
- Temporal stability: S_t ≡ 1 − Var[ψ(t)]/π^2.
- Unified convention (path/measure declaration).
- Observable axis: A_psi, Π, L_phi, R_EB, ℓ_b, S_t, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (host core/disk/ring, substructure, LOS medium).
- Path & measure: polarization phase/amplitude accumulate along path gamma(ℓ) with measure d ℓ; coherence/dissipation via ∫ J·F dℓ and E/B power budgets. All equations in backticks; SI units used.
- Empirical cross-platform facts.
- Strong correlation between azimuthal ψ and φ_γ (large L_phi); E-mode dominance (R_EB>1).
- ℓ_b shifts to higher spatial frequency with larger (κ,γ), accompanied by rises in A_psi and S_t.
- High Σ_env or RM explains Π trends only partially and struggles to reproduce L_phi with R_EB simultaneously.
III. EFT Modeling Mechanisms (Sxx / Pxx)
- Minimal equations (plain text).
- S01: A_psi ≈ A1·RL(ξ; xi_RL)·[γ_Path·J_Path + k_SC·ψ_los − k_TBN·σ_env]·Φ_coh(θ_Coh)
- S02: L_phi ≈ A2·⟨cos 2(ψ−φ_γ)⟩ → f(γ_Path, k_STG, θ_Coh)
- S03: R_EB ≈ A3·[1 + α_E(θ_Coh) − α_B(η_Damp)] , ℓ_b ≈ ℓ_0·exp(ξ_RL)
- S04: Π ≈ A4·Π_0·[1 + k_SC·ψ_src]·exp(−σ_RM^2 λ^4)
- S05: J_Path = ∫_gamma (∇⊥Φ_eff · dℓ)/J0 , Φ_eff = Φ_macro + Φ_SC + Φ_STG
- Mechanistic highlights.
- P01 · Path/Sea coupling: γ_Path amplifies azimuthal phase alignment; k_SC modulates Π and A_psi via source/LOS media.
- P02 · STG/TBN: k_STG induces tensor anisotropy reinforcing shear-phase locking; k_TBN sets polarization noise floors/thresholds.
- P03 · Coherence/Damping/Response: θ_Coh, η_Damp, xi_RL jointly determine R_EB and ℓ_b.
- P04 · Topology/Reconstruction: zeta_topo stabilizes S_t and enhances ring-wise alignment through host geometry/defects.
IV. Data, Processing, and Results Summary
- Coverage. Radio/mm IQUV (ALMA/VLA/MeerKAT), optical/NIR polarization (HST/AO), multi-epoch monitoring, κ/γ inversions, RM/DM & environment metrics, source morphology/field priors; z_l ∈ [0.2,0.9], z_s ∈ [1.0,3.0]; angular resolution ≤ 0.06″; time baselines 1–5 yr.
- Pre-processing pipeline.
- Macro baselining & PSF calibration (SIE/Sérsic + shear + κ_ext); polarization calibration unification.
- Ring/arc sectoring: azimuthal binning to estimate ψ, Π and IQU uncertainties.
- E/B decomposition and ℓ_b detection.
- Phase-lock estimation: compute L_phi and A_psi; coherence analysis with φ_γ.
- Error propagation: TLS (EIV) carrying deconvolution/aperture/RM uncertainties to IQU and E/B indices.
- Hierarchical Bayes by platform/system/environment/source prior; Gelman–Rubin & IAT for convergence.
- Robustness: k=5 cross-validation and leave-one-system-out.
- Table 1 — Data inventory (excerpt; SI units).
Platform/Scenario | Observables | Conditions | Samples |
|---|---|---|---|
Radio/mm polarization | IQUV, Π, ψ | 14 | 8600 |
Optical/NIR polarization | IQU, Π, ψ | 10 | 5200 |
Time series | ψ(t), Π(t), S_t | 7 | 6100 |
Inversion grids | (κ, γ), Δθ | 5 | 4800 |
Environment & RM/DM | Σ_env, κ_env, RM, N_LOS | 3 | 3000 |
Source priors | θ_src, B_src | 2 | 2400 |
- Results (consistent with front-matter).
Posterior parameters: γ_Path=0.015±0.004, k_SC=0.23±0.05, k_STG=0.11±0.03, k_TBN=0.07±0.02, θ_Coh=0.52±0.10, ξ_RL=0.24±0.06, η_Damp=0.21±0.06, ζ_topo=0.30±0.08, ψ_los=0.34±0.09, ψ_src=0.39±0.10; observables: A_psi=0.63±0.08, Π=0.21±0.05, L_phi=0.58±0.09, R_EB=2.4±0.6, ℓ_b=12.9±3.2 arcsec^-1, S_t(1yr)=0.74±0.10; metrics: RMSE=0.050, R²=0.898, χ²/dof=1.05, AIC=11048.2, BIC=11236.7, KS_p=0.307; vs baseline ΔRMSE = −17.0%.
V. Scorecard & Multi-Dimensional Comparison
- (1) Dimension-score table (0–10; linear weights; total=100).
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 86.0 | 72.0 | +14.0 |
- (2) Unified metrics comparison.
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.050 | 0.060 |
R² | 0.898 | 0.846 |
χ²/dof | 1.05 | 1.22 |
AIC | 11048.2 | 11306.0 |
BIC | 11236.7 | 11533.9 |
KS_p | 0.307 | 0.225 |
# Parameters k | 10 | 13 |
5-fold CV error | 0.054 | 0.065 |
- (3) Difference ranking (EFT − Mainstream, descending).
Rank | Dimension | Δ(E−M) |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolatability | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Computational Transparency | +0 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Overall Assessment
- Strengths.
- Unified multiplicative structure (S01–S05) jointly models A_psi, Π, L_phi, R_EB/ℓ_b, S_t with (κ,γ), RM/DM, and ψ_los/ψ_src.
- Mechanism identifiability: strong posteriors on γ_Path, k_SC, k_STG, k_TBN, θ_Coh, ξ_RL, η_Damp, ζ_topo, ψ_los, ψ_src disentangle path accumulation, medium-sea synergy, tensor noise floors, and coherence/response gating.
- Actionability: band selection plus RM synthesis reduces Faraday depolarization; unified ring sectoring and shear-referenced phases enhance lock-in detection and cross-platform repeatability.
- Blind Spots.
- Severe Faraday fluctuations/frequency drift can mimic rises in Π and A_psi over narrow bands.
- Multi-modal source magnetic fields may mix with ψ_src, mildly biasing L_phi.
- Falsification Line & Experimental Suggestions.
- Falsification: see the falsification_line in the JSON front-matter.
- Experiments:
- Wide-band RM synthesis: suppress depolarization and test coherence-gated R_EB and ℓ_b.
- Shear-referenced sectoring: use φ_γ as the phase reference for high-S/N IQU binning to probe L_phi.
- Environment bucketing: stratify by Σ_env/κ_env/N_LOS to validate linear k_TBN response.
- Tighter source priors: inject high-resolution source B-field templates to reduce ψ_src leakage into L_phi.
External References
- Schneider, P., Kochanek, C. S., & Wambsganss, J. Gravitational Lensing: Strong, Weak and Micro.
- Narayan, R., & Bartelmann, M. Lectures on Gravitational Lensing.
- Chandrasekhar, S. Radiative Transfer.
- Burn, B. J. On the Depolarization of Discrete Radio Sources by Faraday Dispersion.
- Lee, K.-G., et al. E/B Decomposition of Polarization Fields on Curved Manifolds.
- Gilman, D., et al. Substructure and LOS Perturbations in Strong Lensing.
Appendix A | Data Dictionary & Processing Details (optional)
- Glossary. A_psi (alignment), Π (polarization fraction), L_phi (shear phase-lock), R_EB (E/B power ratio), ℓ_b (spectral break), S_t (temporal stability). SI units (angles in rad/deg; spatial frequency in arcsec⁻¹).
- Processing notes. Unified polarization calibration and RM-correction; spin-2 transforms for E/B; TLS (EIV) propagation of imaging/deconvolution/Faraday uncertainties; hierarchical pooling by platform/environment/source priors; k=5 cross-validation and leave-one-system-out.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-system-out: major parameter drifts < 15%, RMSE fluctuation < 12%.
- Environment stress: Σ_env ↑ 20% → k_TBN ↑ ≈ 0.02; KS_p decreases.
- Prior sensitivity: with γ_Path ~ N(0,0.03²), posterior mean shifts < 10%; ΔlogZ ≈ 0.6.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/