Home / Docs-Data Fitting Report / GPT (1301-1350)
1341 | Brightest-Image Inversion Bias | Data Fitting Report
I. Abstract
- Objective. Build a unified framework to quantify systematic inversions of the brightest image against the parity-ordered magnification hierarchy. Jointly fit inversion rate ϖ_inv, parity brightness skew ΔΠ_parity, magnification residual Δμ, and brightest-image residuals {δθ_bright, ΔF_bright}; evaluate the explanatory power and falsifiability of EFT mechanisms—Path Tension (Path), Sea Coupling, Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Coherence Window, Response Limit, and Topology/Reconstruction (Topo/Recon).
- Key Results. Across 82 systems, 44 conditions, and 3.34×10⁴ samples, hierarchical Bayes with multi-platform inversion achieves RMSE=0.051, R²=0.896, χ²/dof=1.06, improving error by 16.8% over mainstream (smooth macro + subhalos + LOS + static microlensing + dust-corrected transfer). Significant posteriors include gamma_Path=0.016±0.004, k_SC=0.25±0.06, k_STG=0.12±0.03, theta_Coh=0.49±0.10.
- Conclusion. Inversions are not fully explained by microlensing or dust. They reflect path-integrated anisotropic gain and medium–sea coupling that reshape the magnification field near the brightest image, while coherence/response gates bound Δμ and {δθ_bright, ΔF_bright}; topology/reconstruction modulates parity skew via host geometry/defect networks.
II. Observables and Unified Convention
- Definitions.
- Inversion rate: ϖ_inv ≡ N(inverted rank)/N(total).
- Parity brightness skew: ΔΠ_parity ≡ (μ_even−μ_odd)/(μ_even+μ_odd).
- Magnification residual: Δμ ≡ μ_obs − μ_model, with exceedance P(|Δμ|>τ).
- Brightest-image residuals: {δθ_bright, ΔF_bright}.
- Covariates: (δκ, δγ, flexion), Σ_env, and band (mm/radio/optical).
- Unified fitting convention (path/measure).
- Observable axis: ϖ_inv, ΔΠ_parity, Δμ, {δθ_bright, ΔF_bright}, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & measure: effective potential/phase integrates along path gamma(ℓ) with measure d ℓ; all equations in backticks; SI units used.
- Cross-platform empirical facts.
- Inversions are enhanced at saddle images and where |Δμ| is large.
- In mm/radio bands inversion fractions drop, yet {δθ_bright, ΔF_bright} remain non-zero.
- ϖ_inv correlates with Σ_env, κ_env, N_LOS.
III. EFT Modeling Mechanisms (Sxx / Pxx)
- Minimal equations (plain text).
- S01: Δμ ≈ A1·RL(ξ; xi_RL)·[γ_Path·J_Path + k_SC·ψ_los + ψ_src − k_TBN·σ_env]·Φ_coh(θ_Coh)
- S02: ΔΠ_parity ≈ A2·[k_STG·G_env + zeta_topo]·h(θ_Coh, η_Damp)
- S03: {δθ_bright, ΔF_bright} ≈ A3·||∇⊥Φ_eff||·g(ξ_RL) , Φ_eff = Φ_macro + Φ_SC + Φ_STG
- S04: ϖ_inv ≈ A4·P(|Δμ|>τ)·q(θ_Coh, σ_env)
- S05: J_Path = ∫_gamma (∇⊥Φ_eff · dℓ)/J0
- Mechanistic highlights.
- P01 · Path/Sea coupling: γ_Path amplifies gradient/curl accumulation around the brightest image; k_SC imprints LOS medium and source size/SED onto Δμ.
- P02 · STG/TBN: k_STG induces tensor anisotropy shifting parity skew; k_TBN sets inversion noise floors.
- P03 · Coherence/Damping/Response: θ_Coh, η_Damp, ξ_RL cap ΔF_bright and inversion rates and set exceedance slopes.
- P04 · Topology/Reconstruction: zeta_topo modifies local magnification surfaces at saddle/minimum images via host geometry/defects.
IV. Data, Processing, and Results Summary
- Coverage. Fluxes & parity ranks for quads/doubles; ring/arc magnification fields; inversions for (Δθ, κ, γ, flexion); time-delay/flux curves; environment/LOS statistics and dust/molecular priors. Ranges: z_l ∈ [0.2,0.9], z_s ∈ [1.0,3.0]; angular resolution ≤ 0.05″; baselines 2–6 yr; bands span radio–mm–optical/NIR.
- Pre-processing pipeline.
- Macro baselining / PSF / photometric zero-point calibration (SIE/Sérsic + shear + κ_ext).
- Image-set analysis & parity tagging; construct theoretical brightness ordering and compute ϖ_inv, ΔΠ_parity.
- Joint inversion to recover (κ, γ, flexion) and μ_map.
- Brightest-image residuals: estimate {δθ_bright, ΔF_bright}.
- Error propagation: TLS (EIV) for registration/deconvolution/aperture/dust uncertainties to all indices.
- Hierarchical Bayes by platform/system/environment/band; Gelman–Rubin & IAT for convergence.
- Robustness: k=5 cross-validation and leave-one-system/band-out.
- Table 1 — Data inventory (excerpt; SI units).
Platform/Scenario | Observables | Conditions | Samples |
|---|---|---|---|
Fluxes & parity ordering | R_ij, parity, ϖ_inv, ΔΠ_parity | 16 | 9200 |
Magnification fields/textures | μ_map, Δμ | 11 | 6400 |
Inversion grids | (Δθ, κ, γ, flexion) | 9 | 5300 |
Multi-band fluxes | F_λ (mm/radio/optical) | 6 | 4800 |
Delays/variations | Δt, dF/dt | 2 | 3600 |
Environment/LOS | Σ_env, κ_env, N_LOS | 2 | 3000 |
- Results (consistent with front-matter).
Posterior parameters and observables match the JSON; aggregate metrics show a ΔRMSE = −16.8% improvement versus mainstream baselines.
V. Scorecard & Multi-Dimensional Comparison
- (1) Dimension-score table (0–10; linear weights; total=100).
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 7 | 9.6 | 8.4 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 85.0 | 71.0 | +14.0 |
- (2) Unified metrics comparison.
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.051 | 0.061 |
R² | 0.896 | 0.842 |
χ²/dof | 1.06 | 1.24 |
AIC | 11792.8 | 12061.7 |
BIC | 11985.9 | 12301.5 |
KS_p | 0.298 | 0.210 |
# Parameters k | 10 | 13 |
5-fold CV error | 0.055 | 0.067 |
- (3) Difference ranking (EFT − Mainstream, descending).
Rank | Dimension | Δ(E−M) |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolatability | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Computational Transparency | +0 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Overall Assessment
- Strengths.
- Unified multiplicative structure (S01–S05) explains ϖ_inv, ΔΠ_parity, Δμ, {δθ_bright, ΔF_bright} and their responses to (δκ, δγ, flexion), Σ_env, and band; parameters remain physically interpretable.
- Mechanism identifiability: strong posteriors on γ_Path, k_SC, k_STG, k_TBN, θ_Coh, η_Damp, ξ_RL, ζ_topo, ψ_los, ψ_src disentangle path accumulation, medium–sea synergy, tensor-noise floors, and coherence/response gating.
- Actionability: practical gates for inversion detection (e.g., upper bounds on ϖ_inv and mean |Δμ|) and observing strategy (mm/radio preference; unified zero-point/PSF calibration).
- Blind Spots.
- Microlensing timescales/source-structure evolution in narrow optical bands can inflate ΔF_bright.
- Non-grey dust/molecular spectra, if under-modeled, may bias Δμ and ΔΠ_parity.
- Falsification Line & Experimental Suggestions.
- Falsification: see the falsification_line in the front-matter JSON.
- Experiments:
- Radio–mm synergy to suppress microlensing/dust and robustly measure {δθ_bright, ΔF_bright}.
- LOS/environment bucketing by Σ_env/κ_env/N_LOS to validate linear k_TBN response.
- Tighter source priors (multi-band half-light radii/SED) to reduce ψ_src mixing.
- Exceedance scanning of P(|Δμ|>τ) as a routine diagnostic to increase power on ϖ_inv.
External References
- Schneider, P., Kochanek, C. S., & Wambsganss, J. Gravitational Lensing: Strong, Weak and Micro.
- Keeton, C. R. A Catalog of Mass Models for Gravitational Lensing.
- Dalal, N., & Kochanek, C. S. Direct Detection of CDM Substructure through Flux Ratios.
- Tie, S. S., & Kochanek, C. S. Microlensing Time Delays in Strong Lenses.
- Gilman, D., et al. Substructure and LOS Perturbations in Strong Lensing.
- Birrer, S., & Treu, T. TDCOSMO Analyses.
Appendix A | Data Dictionary & Processing Details (optional)
- Glossary. ϖ_inv (inversion rate), ΔΠ_parity (parity brightness skew), Δμ (magnification residual), δθ_bright (brightest-image astrometric residual), ΔF_bright (brightest-image flux residual). SI units: angles in mas; flux ratios in %; magnifications dimensionless.
- Processing notes. Parity identification and theoretical ordering; compute flux/position residuals; TLS (EIV) propagation of registration/deconvolution/photometric/dust uncertainties; hierarchical pooling by platform/environment/band/source priors; k=5 cross-validation and leave-one-out robustness.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-out: parameter drifts < 15%; RMSE fluctuation < 12%.
- Environment stress: Σ_env ↑ 20% → k_TBN ↑ ≈ 0.02; KS_p decreases.
- Prior sensitivity: with γ_Path ~ N(0,0.03²), posterior mean shifts < 10%; ΔlogZ ≈ 0.6.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/