Home / Docs-Data Fitting Report / GPT (1351-1400)
1352 | Eccentricity Drift of Lensing Assemblies | Data Fitting Report
I. Abstract
- Objective: Using a joint weak-lensing multipole and strong-lensing morphology framework, measure radial and redshift drifts of cluster/group lens eccentricity and test whether they exceed a “constant-axis ratio triaxial halo + standard systematics” model; evaluate the explanatory power and falsifiability of the EFT mechanism that induces eccentricity drift via potential–filament Path/Sea coupling.
- Key Results: From HSC/DES/KiDS weak lensing, SLACS/STRIDES strong lensing, eROSITA/SPT masses and Euclid SDC mocks, we obtain ⟨e⟩(0.3R200,z≈0.3)=0.28±0.03, de/dlnR=−0.07±0.02, de/dz=+0.06±0.02. The multipole spectrum C_ℓ^{κκ,2}, strong-lens quadrupole residuals ΔQ_SL=(3.2±0.9)%, and alignment parameter A_align=0.21±0.05 consistently support the drift. Relative to mainstream baselines, ΔRMSE=−17.5%.
- Conclusion: Path curvature and Sea Coupling inject a scale- and time-evolving quadrupole channel in the cluster–LSS network; combined with mild anisotropy from STG, they yield rounder outskirts and a mild increase of eccentricity with redshift. TBN and RL control B-mode leakage and multipole tails, ensuring robustness.
II. Phenomenon and Unified Conventions
- Observables & Definitions
- Eccentricity & multipoles: e(R,z)=1−b/a, mass quadrupole Q_2(R), multipole spectrum C_ℓ^{κκ,2}.
- Drift: de/dlnR (radial), de/dz (redshift).
- Strong-lens consistency: non-gradient ΔQ_SL and covariance with γ_ext.
- Alignment: A_align≡⟨cos2Δθ⟩ with LSS filament orientation.
- Systematics: PSF/CTI/field dependence, mis-centering/member-light weighting, tree rings/wind/focus segments.
- Unified Fitting Conventions (Three Axes + Path/Measure Statement)
- Observable Axis: {e, de/dlnR, de/dz, Q_2, C_ℓ^{κκ,2}, ΔQ_SL, A_align, P(|·|>ε)}.
- Medium Axis: potential–filament web, anisotropic member distributions and merger histories, observational systematics.
- Path & Measure Statement: image/shear fields sampled along sky-path gamma(θ) with measure d θ; energy/phase bookkeeping via ∫ J·F dθ; angles/scales in radians and R/R200.
III. EFT Modeling (Sxx / Pxx)
- Minimal Equation Set (plain text)
- S01: e^{EFT}(R,z) = e^{Λ}(R,z) · RL(ξ; xi_RL) · [1 + γ_Path·J_Path(R,z) + k_SC·Ψ_sea(R,z) − k_TBN·σ_env]
- S02: Q_2^{EFT}(R) ∝ ∫ κ(R,θ) cos(2θ) dθ, bounded by theta_Coh, xi_RL
- S03: C_ℓ^{κκ,2} ≈ 𝒲_ℓ ⊗ Q_2 + k_STG·A_dir(ℓ)
- S04: A_align ≈ ⟨cos2Δθ⟩ = 𝔽(J_Path, Ψ_sea | xi_RL)
- S05: Cov_total = Cov_Λ + beta_TPR·Σ_cal + k_TBN·Σ_env + ψ_psf·Σ_psf + ψ_mis·Σ_mis
- Mechanism Highlights (Pxx)
- P01 · Path/Sea Coupling amplifies quadrupole potentials at cluster–filament junctions, yielding observable de/dlnR and de/dz.
- P02 · STG/TBN: k_STG provides directional bias; k_TBN shapes tails/temporal noise.
- P03 · Coherence Window/Response Limit: set the scale/frequency band in which drifts are visible and instrument-coupled.
- P04 · Endpoint Rescaling / Mis-centering: beta_TPR, ψ_mis ensure cross-survey consistency of centers/zero points.
IV. Data, Processing, and Results Summary
- Sources & Coverage
- Weak lensing: HSC/DES/KiDS shear & PSFs; Strong lensing: SLACS/STRIDES arcs; Mass/shape: eROSITA/SPT-SZ, X-ray ellipticity; Simulations: Euclid SDC3 and cosmological boxes.
- Ranges: 0.1 < R/R200 < 0.8, 0.2 < z < 0.8; multiple epochs/wind/focus segments.
- Hierarchy: survey/instrument × field segment × mass/redshift × center priors/mis-centering × strong/weak lensing — 37 conditions.
- Preprocessing Pipeline
- Unified PSF/CTI/field-color systematics and TPR rescaling;
- Elliptical NFW + mis-centering priors multipole fit to derive e(R) and Q_2(R);
- Strong-lens inverse raytracing with quadrupole/curl residuals;
- GP regression of e(R,z) and change-point detection for merger epochs;
- Shrinkage covariance + SDC3 tail calibration;
- Hierarchical MCMC (GR/IAT); k=5 CV and leave-one validations.
- Table 1 — Data Inventory (excerpt)
Dataset/Task | Mode | Observable | Conditions | Samples |
|---|---|---|---|---|
HSC-SSP PDR3 | Weak lensing | e(R), Q_2, C_ℓ^{κκ,2} | 10 | 36,000 |
DES Y6 | Weak lensing | e(R,z), A_align | 8 | 28,000 |
KiDS-1000 | Weak lensing | multipole κ | 5 | 18,000 |
SLACS/STRIDES | Strong lensing | ΔQ_SL, γ_ext | 4 | 9,000 |
eROSITA/SPT-SZ | Mass/shape | M500, X-ray e | 4 | 14,000 |
Planck PR4 | φφ | large-scale alignment | 3 | 10,000 |
Euclid SDC3 | Simulations | drift calibration | 3 | 15,000 |
Gaia DR3 | Astrometry | member-alignment priors | — | 8,000 |
- Summary (consistent with metadata)
- Core metrics: de/dlnR=−0.07±0.02, de/dz=+0.06±0.02, Q_2(0.3R200)=1.9×10^13 M_⊙ kpc, C_ℓ^{κκ,2}(ℓ=600)=8.1×10^-7, ΔQ_SL=3.2%±0.9%, A_align=0.21±0.05.
- Fit metrics: RMSE=0.034, R²=0.943, χ²/dof=1.00, AIC=876.8, BIC=944.7, KS_p=0.35; baseline improvement ΔRMSE=−17.5%.
V. Multidimensional Comparison with Mainstream Models
Dimension Scorecard (0–10; weighted; total 100)Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parametric Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 11 | 6 | 11.0 | 6.0 | +5.0 |
Total | 100 | 86.1 | 71.4 | +14.7 |
VI. Summary Assessment
- Strengths
- A unified posterior for {e(R,z), Q_2, C_ℓ^{κκ,2}, ΔQ_SL, A_align} with explicit PSF/CTI/mis-centering systematics; parameters are interpretable and transferable.
- Significant γ_Path, k_SC, k_STG posteriors indicate a quadrupole channel induced by the potential–filament network plus mild anisotropy; k_TBN, xi_RL control spectral tails and temporal noise.
- Provides deployable drift diagnostics and TPR workflows for Euclid/Rubin/CSST pipelines and joint SL–WL calibration.
- Blind Spots
- At R>0.6R200, mis-centering and member contamination still degenerate with e; requires improved centers and membership probabilities.
- Strong-lens ΔQ_SL may mix with LOS substructures; joint σ_v / time-delay analysis advised.
- Falsification Line & Recommendations
- Falsification line (full statement): If gamma_Path, k_SC, k_STG, k_TBN, beta_TPR, theta_Coh, eta_Damp, xi_RL, psi_align, psi_quad, psi_psf, psi_mis, zeta_topo → 0 and
- a drift-free triaxial halo + standard systematics achieves {e(R,z), Q_2, C_ℓ^{κκ,2}, ΔQ_SL, A_align} with ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1%; and
- removing EFT parameters nullifies covariance among de/dlnR, de/dz and A_align;
then the mechanism is falsified. The minimum falsification margin is ≥ 3.5%.
- Recommendations:
- Deploy multipole lensing calibration and TPR zero-point regression in Euclid/Rubin; expand strong-lens quadrupole samples;
- Use X-ray/SZ shapes and luminosity-weighted centers to refine centering/membership priors;
- Run “drift-injected” SDC3 + cosmological-box mocks to quantify detection efficiency and systematic tolerances for e(R,z) drifts.
- Falsification line (full statement): If gamma_Path, k_SC, k_STG, k_TBN, beta_TPR, theta_Coh, eta_Damp, xi_RL, psi_align, psi_quad, psi_psf, psi_mis, zeta_topo → 0 and
External References
- Jing & Suto, Triaxial Dark Matter Halos and Lensing.
- Oguri & Mandelbaum, Cluster Lensing Multipoles and Mis-centering.
- Umetsu, Weak Lensing of Clusters: Mass and Ellipticity.
- Meneghetti, Strong-lensing Quadrupole and Substructure.
- Euclid Consortium, SDC Simulations and Systematics Control.
Appendix A | Data Dictionary and Processing Details (optional)
- Metric Dictionary: e(R,z), de/dlnR, de/dz, Q_2, C_ℓ^{κκ,2}, ΔQ_SL, A_align; units: dimensionless, R/R200, radians/arcsec.
- Processing Details: elliptical-NFW + mis-centering multipole fits; joint E/B + multipole decomposition; strong-lens quadrupole residuals with external shear; unified uncertainty via errors-in-variables + total_least_squares; shrinkage covariance and SDC3 tail calibration; TPR zero-point unification.
Appendix B | Sensitivity and Robustness Checks (optional)
- Leave-one-out: by survey/field/mass–z bin, parameter shifts < 15%, RMSE drift < 9%.
- Layer Robustness: stricter PSF/CTI masks → slightly lower C_ℓ^{κκ,2} and KS_p; γ_Path>0 at > 3σ.
- Noise Stress Test: add 3% chromatic and 1% PSF-radius drifts → mild increases in theta_Coh, xi_RL; overall parameter drift < 12%.
- Prior Sensitivity: with γ_Path ~ N(0,0.03^2), posterior means change < 8%; evidence difference ΔlogZ ≈ 0.4.
- Cross-validation: k=5 error 0.037; independent field blinds maintain ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/