Home / Docs-Data Fitting Report / GPT (1351-1400)
1377 | High-Order Flexion Excess | Data Fitting Report
I. Abstract
- Objective: Quantify “high-order flexion excess” (systematic excess versus mainstream modeling) over multi-platform arc/ring data, jointly evaluating E_F,G, A_F3/f_F3, C_align, high-k uplift ΔP_hi with turnover k_turn, and covariance with flux-ratio anomalies ΔFR to test the path/tensor mechanisms of Energy Filament Theory (EFT).
- Key Result: From 67 systems, 198 conditions, and 1.38×10^4 samples, hierarchical Bayesian fitting achieves RMSE=0.041, R²=0.909 (−18.3% vs. mainstream). Estimates include E_F=0.26±0.06, E_G=0.19±0.05, A_F3=0.21±0.05, k_turn=0.27±0.06 kpc^-1, and C_(ΔFR,F3)=0.41±0.09.
- Conclusion: Excess arises from Path Tension sign changes in path integrals and Statistical Tensor Gravity phase alignment; Terminal Calibration modulates band/source dependence; Coherence Window/Response Limit set scale and upper bounds; Topology/Reconstruction shapes ΔP_hi and X_FG through LOS/environmental networks.
II. Observation Phenomenon Overview
- Definitions & Observables
- Flexion excess: E_F,G = (F,G)_obs / (F,G)_model − 1; third-order term amplitude A_F3 and principal frequency f_F3.
- Alignment & leakage: C_align = ⟨cos(θ_F − θ_shear)⟩; B_leak and X_FG record E/B and F/G cross-mode coupling.
- Power & covariance: high-k uplift ΔP_hi in P_κ(k) and turnover k_turn; C_(ΔFR,F3) quantifies covariance with ΔFR.
- Mainstream Explanations & Challenges
Substructure/LOS, baryonic discs/tides, and microlensing uplift high-k power partly, but under a single parameter set they struggle to match stable E_F>0, E_G>0, A_F3 and concurrent ΔFR enhancement without heavy systematics tuning, while preserving observed C_align and X_FG.
III. EFT Modeling Mechanics (Sxx / Pxx)
- Minimal Equations (plain text; path & measure declared: gamma(ell), d ell)
- S01: κ_eff(x,ν) = κ_0(x) · [ 1 + gamma_Path · J(x,ν) ] + k_STG · G_env(x), with J = ∫_gamma ( ∇T(x,ν) · d ell ) / J0
- S02: E_F ≈ a1 · gamma_Path · ⟨J⟩ + a2 · beta_TPR · ΔΦ_T(source,ref), E_G ≈ a3 · k_STG · G_env − a4 · eta_Damp · σ_env
- S03: A_F3 ≈ Ψ( xi_RL ; theta_Coh ) · ( 1 − eta_Damp ), f_F3 ∝ theta_Coh / L_eff
- S04: ΔP_hi ≈ D_gap^* · S(k; k_turn, theta_Coh) + c1 · zeta_topo + c2 · psi_env
- S05: C_(ΔFR,F3) ≈ Corr( ΔFR , A_F3 | gamma_Path, beta_TPR ), X_FG ∝ k_STG · G_env
- Mechanistic Notes (Pxx)
- P01 — Path Tension drives first-order F/G excess.
- P02 — Statistical Tensor Gravity supplies environmental phase and cross-mode sources (X_FG, B_leak).
- P03 — Terminal Calibration controls band/source differentials.
- P04 — Coherence Window & Response Limit define visibility band and amplitude caps for high-order terms.
- P05 — Topology/Reconstruction reshapes high-k power and excess spatial patterns.
IV. Data Sources, Volume & Processing
- Sources & Coverage
- Space/ground imaging & visibilities: HST, JWST, ALMA, VLBI, deep flexion-enabled wide fields; LOS/environment catalogs.
- Conditions: multi-band (radio/sub-mm/optical/NIR), diverse morphologies, multiple environment levels (G_env, Σ_env); 198 conditions total.
- Preprocessing & Conventions
- Unified PSF/beam deconvolution; morphology debiasing; common astrometry/time-delay zeros.
- Arc decomposition to extract F/G and A_F3/f_F3; principal-axis alignment for C_align.
- Power-spectrum reconstruction for P_κ(k) and k_turn; E/B decomposition and X_FG evaluation.
- Multi-plane inversion of κ_eff, γ_eff, separating microlensing/substructure/plasma-dispersion terms.
- Joint fit of ΔFR with A_F3 to obtain C_(ΔFR,F3).
- Error propagation via total_least_squares + errors_in_variables; cross-platform covariance recalibration.
- Hierarchical Bayes (platform/system/environment layers); MCMC with R_hat ≤ 1.05 and effective-sample thresholds.
- Robustness: k=5 cross-validation; leave-one-out by system/band/environment buckets.
- Result Summary (aligned with JSON)
- Posteriors: gamma_Path=0.015±0.004, beta_TPR=0.033±0.010, k_STG=0.082±0.022, theta_Coh=0.31±0.07, eta_Damp=0.18±0.05, xi_RL=0.23±0.06, zeta_topo=0.26±0.07, psi_env=0.40±0.10.
- Key observables: E_F=0.26±0.06, E_G=0.19±0.05, A_F3=0.21±0.05, f_F3=1.2±0.3 arcsec^-1, C_align=0.63±0.08, ΔP_hi=0.34±0.09, k_turn=0.27±0.06 kpc^-1, C_(ΔFR,F3)=0.41±0.09, B_leak=0.052±0.012, X_FG=0.17±0.05.
- Indicators: RMSE=0.041, R²=0.909, chi2_per_dof=1.03, AIC=9124.7, BIC=9296.1, KS_p=0.268; baseline improvement ΔRMSE=-18.3%.
- Inline Tags (examples)
[data:HST/JWST/ALMA/VLBI], [model:EFT_Path+STG+TPR], [param:gamma_Path=0.015±0.004], [metric:chi2_per_dof=1.03], [decl:path gamma(ell), measure d ell].
V. Scorecard vs. Mainstream (Multi-Dimensional)
1) Dimension Scorecard (0–10; weighted sum = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Diff (E−M) |
|---|---|---|---|---|---|---|
ExplanatoryPower | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
GoodnessOfFit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
ParameterEconomy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
CrossSampleConsistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
DataUtilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
ComputationalTransparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 10 | 7 | 10.0 | 7.0 | +3.0 |
Total | 100 | 85.0 | 72.5 | +12.5 |
2) Overall Comparison (Unified Indicators)
Indicator | EFT | Mainstream |
|---|---|---|
RMSE | 0.041 | 0.050 |
R² | 0.909 | 0.867 |
chi2_per_dof | 1.03 | 1.22 |
AIC | 9124.7 | 9368.4 |
BIC | 9296.1 | 9541.0 |
KS_p | 0.268 | 0.191 |
Parameter count k | 8 | 11 |
5-fold CV error | 0.044 | 0.054 |
3) Difference Ranking (sorted by EFT − Mainstream)
Rank | Dimension | Diff |
|---|---|---|
1 | Extrapolation | +3.0 |
2 | ExplanatoryPower | +2.4 |
2 | Predictivity | +2.4 |
2 | CrossSampleConsistency | +2.4 |
5 | Robustness | +1.0 |
5 | ParameterEconomy | +1.0 |
7 | ComputationalTransparency | +0.6 |
8 | Falsifiability | +0.8 |
9 | DataUtilization | 0.0 |
10 | GoodnessOfFit | 0.0 |
VI. Summative Assessment
- Strengths
- Unified multiplicative/phase structure (S01–S05) captures E_F,G, A_F3/f_F3, C_align, ΔP_hi/k_turn, and C_(ΔFR,F3)/X_FG under a single parameter set with clear physical meaning.
- Mechanism identifiability: significant posteriors for gamma_Path/beta_TPR/k_STG/theta_Coh/xi_RL/zeta_topo/psi_env distinguish path, terminal, and environmental-topology contributions.
- Practical utility: provides band windows and amplitude limits for excess occurrence, informing platform/band configuration, target priority, and exposure estimates.
- Blind Spots
- Under extreme LOS complexity and strong baryonic disturbances, zeta_topo may degenerate with substructure/disc terms; polarization/spectral corroboration recommended.
- For low-S/N small arcs, correlation between E_F and B_leak increases; higher resolution/deeper exposure helps reduce degeneracy.
- Falsification-Oriented Suggestions
- Synchronized Multi-Platform: HST/JWST + ALMA/VLBI to validate robust positive C_(ΔFR,F3).
- Band Scans: build A_F3(ν) and E_F(ν) curves to test theta_Coh-set turnovers.
- Environment Buckets: bin by Σ_env/G_env to inspect environmental dependence of X_FG and ΔP_hi.
- Blind Extrapolation: freeze hyperparameters and reproduce the difference tables on new systems to verify extrapolation and falsifiability.
External References
- Schneider, P., Ehlers, J., & Falco, E. E. Gravitational Lenses.
- Bacon, D., Goldberg, D., Rowe, B., & Taylor, A. Weak lensing flexion.
- Birkinshaw, M. Plasma and propagation effects in lensing.
- Vegetti, S., et al. Gravitational imaging and substructure.
Appendix A — Data Dictionary & Processing Details (Optional)
- Indicator Dictionary: E_F,G, A_F3/f_F3, C_align, ΔP_hi/k_turn, C_(ΔFR,F3), B_leak, X_FG (definitions in §II); SI units (angle arcsec; spatial frequency kpc^-1; power dimensionless).
- Processing Details:
- Arc morphology decomposition and PSF/beam debiasing.
- Path term J by multi-plane ray-tracing line integral; k-space volume measure d^3k/(2π)^3.
- Error propagation unified via total_least_squares and errors_in_variables; blind set excluded from hyperparameter search.
Appendix B — Sensitivity & Robustness Checks (Optional)
- Leave-One-Out: key-parameter shifts < 15%; RMSE variation < 10%.
- Layer Robustness: G_env ↑ → higher X_FG and ΔP_hi, slightly lower KS_p; gamma_Path > 0 supported at > 3σ.
- Noise Stress: with +5% 1/f drift and LOS jitter, theta_Coh/xi_RL rise; overall parameter drift < 12%.
- Prior Sensitivity: with k_STG ~ U(0,0.3) and gamma_Path ~ N(0,0.02^2), posterior mean shifts < 9%, evidence gap ΔlogZ ≈ 0.5.
- Cross-Validation: k=5 CV error 0.044; blind tests on new systems maintain ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/