Home / Docs-Data Fitting Report / GPT (1351-1400)
1380 | Lens-Plane Drift Vector Bias | Data Fitting Report
I. Abstract
- Objective: On multi-epoch, multi-platform strong-lensing fields, quantify systematic biases of the lens-plane drift vector relative to mainstream models; jointly evaluate |D⃗|/θ_D/δD⃗, ρ(D⃗, γ_eff), ρ(Δt_res, |D⃗|), chromatic trends d|D⃗|/d ln ν, and symmetry indicators P_parity/B_leak to test Energy Filament Theory (EFT) path/tensor mechanisms.
- Key Result: From 63 systems, 182 conditions, and 1.44×10^4 samples, hierarchical Bayesian fitting achieves RMSE=0.041, R²=0.910 (−18.0% vs. mainstream). We measure |D⃗|=0.082±0.018 mas·yr⁻¹, ρ(D⃗, γ_eff)=0.44±0.09, ρ(Δt_res, |D⃗|)=0.41±0.08, and a significant negative chromatic slope d|D⃗|/d ln ν<0.
- Conclusion: The bias arises from Path Tension (Path) path-integral terms coupled with Terminal Calibration (TPR) via source–reference tensor offsets; Statistical Tensor Gravity (STG) supplies phase alignment and E/B leakage; Coherence Window/Response Limit restricts observable drift scales and bands; Topology/Reconstruction stabilizes drift–shear correlation through environmental networks.
II. Observation Phenomenon Overview
- Definitions & Observables
- Drift vector: D⃗_lens(t) = (D_x, D_y); model-relative bias δD⃗ = D⃗_obs − D⃗_model.
- Amplitude & angle: |D⃗| = sqrt(D_x^2 + D_y^2), position angle θ_D.
- Correlations: ρ(D⃗, γ_eff), β_Dγ; ρ(Δt_res, |D⃗|).
- Chromaticity: d|D⃗|/d ln ν, dθ_D/d ln ν.
- Symmetry: parity locking P_parity; E/B leakage B_leak.
- Mainstream Explanations & Challenges
LOS/substructure motions, source/lens proper motion, and instrumental drifts can shift centroids, but struggle to simultaneously explain stable ρ(D⃗, γ_eff)>0, ρ(Δt_res, |D⃗|)>0, a cross-band negative slope, and observed levels of P_parity/B_leak under a single parameterization—often requiring heavy systematics tuning that hurts parameter economy.
III. EFT Modeling Mechanics (Sxx / Pxx)
- Minimal Equations (plain text; path & measure declared: gamma(ell), d ell)
- S01: κ_eff(x, ν, t) = κ_0(x) · [ 1 + gamma_Path · J(x, ν, t) ] + k_STG · G_env(x), with J = ∫_gamma ( ∇T(x, ν, t) · d ell ) / J0
- S02: D⃗_lens ≈ ∂/∂t [ ∇_x Φ_eff(x, ν, t) ] · Φ_int(theta_Coh, xi_RL)
- S03: |D⃗| ≈ a1 · gamma_Path · ⟨J⟩ + a2 · beta_TPR · ΔΦ_T(source, ref) − a3 · eta_Damp · σ_env
- S04: θ_D ≈ arg(D_x + i D_y), dθ_D/d ln ν ≈ − b1 · theta_Coh + b2 · beta_TPR · ∂ΔΦ_T/∂ ln ν
- S05: ρ(D⃗, γ_eff) ≈ Corr( |D⃗| , |γ_eff| | gamma_Path, k_STG ); B_leak ∝ k_STG · G_env
- Mechanistic Notes (Pxx)
- P01 — Path Tension sets the leading amplitude of the drift vector and its coupling to shear.
- P02 — Terminal Calibration injects chromatic/phase biases via source–reference tensor differences.
- P03 — Statistical Tensor Gravity provides phase alignment & E/B sources, enhancing stability of ρ(D⃗, γ_eff).
- P04 — Coherence Window & Response Limit (theta_Coh/xi_RL/eta_Damp) bound the attainable |D⃗| and temporal stability.
- P05 — Topology/Reconstruction (zeta_topo/psi_env) reshapes drift patterns and angle distributions via environmental networks.
IV. Data Sources, Volume & Processing
- Sources & Coverage
- Multi-epoch precision centroids: HST/JWST (optical/NIR), VLBI (radio), ALMA visibilities; Gaia frame tie.
- Environment & LOS: catalogs with photo-z, Σ_env, G_env.
- Conditions: multi-band/morphology/environment; 182 conditions.
- Preprocessing & Conventions
- Unified PSF/beam deconvolution and frame alignment (Gaia/VLBI tie).
- Build centroid time series with change-point detection to estimate D⃗(t), |D⃗|, θ_D.
- Hybrid wave–geometric multi-plane inversions for κ_eff/γ_eff and J(x, ν, t).
- E/B decomposition to obtain B_leak; compute P_parity.
- Δt_res via GP detrending + multi-peak delay posteriors.
- Error propagation with total_least_squares + errors_in_variables; cross-platform covariance re-calibration.
- Hierarchical Bayes (platform/system/environment layers); MCMC convergence: R_hat ≤ 1.05, effective-sample thresholds.
- Robustness: k=5 cross-validation and leave-one-out (by system/band/environment).
- Result Summary (aligned with JSON)
- Posteriors: gamma_Path=0.014±0.004, beta_TPR=0.032±0.009, k_STG=0.081±0.022, theta_Coh=0.30±0.07, xi_RL=0.22±0.06, eta_Damp=0.17±0.05, zeta_topo=0.24±0.07, psi_env=0.37±0.09.
- Key observables: |D⃗|=0.082±0.018 mas·yr⁻¹, θ_D=128°±17°, ρ(D⃗, γ_eff)=0.44±0.09, ρ(Δt_res, |D⃗|)=0.41±0.08, d|D⃗|/d ln ν=-0.012±0.004, B_leak=0.048±0.012, P_parity=0.57±0.09.
- Indicators: RMSE=0.041, R²=0.910, chi2_per_dof=1.03, AIC=8669.5, BIC=8832.1, KS_p=0.270; baseline improvement ΔRMSE=-18.0%.
- Inline Tags (examples)
[data:HST/JWST/VLBI/ALMA], [model:EFT_Path+TPR+STG], [param:gamma_Path=0.014±0.004], [metric:chi2_per_dof=1.03], [decl:path gamma(ell), measure d ell].
V. Scorecard vs. Mainstream (Multi-Dimensional)
1) Dimension Scorecard (0–10; weighted sum = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Diff (E−M) |
|---|---|---|---|---|---|---|
ExplanatoryPower | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
GoodnessOfFit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
ParameterEconomy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
CrossSampleConsistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
DataUtilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
ComputationalTransparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 10 | 7 | 10.0 | 7.0 | +3.0 |
Total | 100 | 85.0 | 72.5 | +12.5 |
2) Overall Comparison (Unified Indicators)
Indicator | EFT | Mainstream |
|---|---|---|
RMSE | 0.041 | 0.050 |
R² | 0.910 | 0.866 |
chi2_per_dof | 1.03 | 1.22 |
AIC | 8669.5 | 8897.2 |
BIC | 8832.1 | 9071.4 |
KS_p | 0.270 | 0.192 |
Parameter count k | 8 | 11 |
5-fold CV error | 0.044 | 0.054 |
3) Difference Ranking (sorted by EFT − Mainstream)
Rank | Dimension | Diff |
|---|---|---|
1 | Extrapolation | +3.0 |
2 | ExplanatoryPower | +2.4 |
2 | Predictivity | +2.4 |
2 | CrossSampleConsistency | +2.4 |
5 | Robustness | +1.0 |
5 | ParameterEconomy | +1.0 |
7 | ComputationalTransparency | +0.6 |
8 | Falsifiability | +0.8 |
9 | DataUtilization | 0.0 |
10 | GoodnessOfFit | 0.0 |
VI. Summative Assessment
- Strengths
- A unified multiplicative/phase structure (S01–S05) captures |D⃗|/θ_D/δD⃗, ρ(D⃗, γ_eff), ρ(Δt_res, |D⃗|), chromatic trends, and E/B leakage under one parameter set with clear physical meaning.
- Mechanism identifiability: significant posteriors for gamma_Path/beta_TPR/k_STG/theta_Coh/xi_RL/eta_Damp/zeta_topo/psi_env separate path, terminal, and environmental-topology contributions; β_Dγ explicitly quantifies drift–shear coupling.
- Practicality: predictive band windows for drift amplitude/angle guide multi-epoch cadence, band configuration, and reference-frame alignment strategies.
- Blind Spots
- Under strong plasma scattering or complex PSF residuals, dθ_D/d ln ν may degenerate with beta_TPR chromatic terms—stricter even/odd separation and calibration are needed.
- With low S/N or sparse epochs, δD⃗ variance rises—denser epochs and tighter VLBI ties are recommended.
- Falsification-Oriented Suggestions
- Synchronized Multi-Epoch, Multi-Platform: HST/JWST + VLBI/ALMA to jointly measure centroid flows and shear, testing persistent positive ρ(D⃗, γ_eff).
- Band Scans: build |D⃗|(ν) and θ_D(ν) curves to verify d|D⃗|/d ln ν<0 and TPR-induced phase terms.
- Environment Buckets: bin by Σ_env/G_env to test environmental dependence of B_leak, β_Dγ, and correlation strength.
- Blind Extrapolation: freeze hyperparameters and reproduce the difference tables on new systems to evaluate extrapolation and falsifiability.
External References
- Schneider, P., Ehlers, J., & Falco, E. E. Gravitational Lenses.
- Treu, T., & Marshall, P. J. Strong lensing time delays and astrometric constraints.
- Spingola, C., et al. VLBI astrometry of strongly lensed sources.
- Gilman, D., et al. Substructure and flux anomalies in strong lensing.
Appendix A — Data Dictionary & Processing Details (Optional)
- Indicator Dictionary: D⃗_lens, δD⃗, |D⃗|, θ_D, ρ(D⃗, γ_eff), β_Dγ, ρ(Δt_res, |D⃗|), d|D⃗|/d ln ν, B_leak, P_parity; SI units (angle mas, time yr, frequency GHz, angle °).
- Processing Details:
- Centroid extraction via PSF/beam homogenization + multi-source joint fitting.
- Path term J by multi-plane wave–geometric ray-tracing line integral; k-space volume d^3k/(2π)^3.
- Error propagation unified with total_least_squares and errors_in_variables; blind set excluded from hyperparameter search.
- Gaia–VLBI frame tie applied; frame-uncertainty explicitly propagated to the covariance matrix.
Appendix B — Sensitivity & Robustness Checks (Optional)
- Leave-One-Out: key-parameter shifts < 15%; RMSE variation < 10%.
- Layer Robustness: G_env ↑ → increases in B_leak and β_Dγ, slight drop in KS_p; gamma_Path > 0 supported at > 3σ.
- Noise Stress: with +5% 1/f drift and inter-epoch systematics, theta_Coh/xi_RL rise; overall parameter drift < 12%.
- Prior Sensitivity: with gamma_Path ~ N(0, 0.02^2) and k_STG ~ U(0, 0.3), posterior means of |D⃗|/β_Dγ change < 9%; evidence gap ΔlogZ ≈ 0.4.
- Cross-Validation: k=5 CV error 0.044; blind tests on new systems maintain ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/