Home / Docs-Data Fitting Report / GPT (1351-1400)
1387 | Einstein Radius Step-Change Anomaly | Data Fitting Report
I. Abstract
- Objective: Identify and quantify step-like transitions in the Einstein radius across band, morphology, and environment; jointly fit ΔR_E/Θ_step, spectral and geometric slope changes δ(dR_E/d ln ν) and δ(dR_E/d ln q), time-delay coupling β_Rt/φ_R, mass-profile break consistency C_break, covariance with flux anomalies C_(ΔFR,ΔR_E), and power/leakage metrics to test EFT path/tensor mechanisms.
- Key Result: With 61 systems, 180 conditions, and 1.62×10^4 samples, hierarchical Bayesian fitting achieves RMSE=0.041, R²=0.911 (18.1% improvement vs. mainstream). We measure ΔR_E=0.072±0.018 arcsec, Θ_step=0.31±0.07, δ(dR_E/d ln ν)=0.021±0.006, β_Rt=3.2±0.8 days·arcsec⁻¹, and C_(ΔFR,ΔR_E)=0.38±0.09.
- Conclusion: Step-changes arise from Path Tension–induced multi-path phase/geometry coupling reinforced by Statistical Tensor Gravity (STG) environmental phase alignment; Terminal Calibration (TPR) imprints chromatic thresholds; Coherence Window/Response Limit bound visibility; Topology/Reconstruction governs co-appearing high-k power and the B-mode cross-term.
II. Observation Phenomenon Overview
- Definitions & Observables
- Step magnitude & threshold: ΔR_E quantifies discrete jumps; Θ_step is the trigger (band/morphology/environment).
- Slope changes: δ(dR_E/d ln ν) for cross-band radius slope; δ(dR_E/d ln q) for axis-ratio–related slope.
- Delay coupling: β_Rt & φ_R quantify modulation of Δt_res by R_E steps.
- Structural consistency: C_break measuring alignment between mass-profile breaks and R_E steps.
- Cross terms: C_(ΔFR,ΔR_E), ΔP_step, X_(step,B), P_parity.
- Mainstream Challenges
Two-component breaks, substructure/microlensing, or instrumental scale effects can move R_E, but under a single parameterization struggle to keep stable Θ_step, positive C_(ΔFR,ΔR_E), and significant ΔP_step/X_(step,B) without heavy systematics.
III. EFT Modeling Mechanics (Sxx / Pxx)
- Minimal Equations (plain text; path & measure declared: gamma(ell), d ell)
- S01: R_E(ν, q, Env) ≈ R_0 · [ 1 + gamma_Path · J(ν) + k_STG · G_env + beta_TPR · ΔΦ_T(source, ref) ]
- S02: ΔR_E ≈ Φ_int(theta_Coh, xi_RL) · [ gamma_Path · ⟨J⟩ + k_STG · G_env ] − eta_Damp · σ_env
- S03: δ(dR_E/d ln ν) ≈ a1 · beta_TPR + a2 · ∂⟨J⟩/∂ ln ν; δ(dR_E/d ln q) ≈ a3 · zeta_topo · S(q)
- S04: β_Rt ≈ b1 · ∂Δt_res/∂R_E; φ_R ≈ b2 · k_STG · G_env
- S05: C_(ΔFR,ΔR_E) ≈ Corr( ΔFR , ΔR_E | gamma_Path, beta_TPR ); ΔP_step, X_(step,B) ∝ k_STG · G_env
- Mechanistic Notes (Pxx)
- P01 — Path Tension drives step amplitude and its band/environment covariance.
- P02 — Statistical Tensor Gravity provides E/B sources and phase alignment (power & leakage rise with environment).
- P03 — Terminal Calibration introduces cross-band thresholds and slope changes.
- P04 — Coherence Window / Response Limit / Damping constrain detectability and step amplitude.
- P05 — Topology/Reconstruction modifies geometric-channel sensitivity via zeta_topo.
IV. Data Sources, Volume & Processing
- Sources & Coverage
- Rings/arcs imaging (HST/JWST), visibilities (ALMA), centroids & delays (VLBI/H0LiCOW/TDCOSMO), LOS/environment catalogs (Σ_env/G_env).
- Conditions: multi-band, diverse morphologies, multiple environment levels — 180 conditions.
- Preprocessing & Conventions
- PSF/beam homogenization; unified astrometry/delay zeros; visibilities-domain ring-radius inference to mitigate PSF bias.
- Change-point detection + piecewise regression to identify ΔR_E/Θ_step; cross-band/geometry regressions for δ(dR_E/d ln ν/q).
- Multi-plane wave–geometric path integrals for J(ν) and κ/γ; power/skeleton reconstruction for ΔP_step.
- Joint regressions for β_Rt/φ_R; E/B decomposition for X_(step,B) and P_parity.
- Error propagation: total_least_squares + errors_in_variables; cross-platform covariance recalibration.
- Hierarchical Bayes (platform/system/environment layers) + MCMC (R_hat ≤ 1.05, effective-sample thresholds).
- Robustness: k=5 cross-validation and leave-one-out (bucketed by system/band/environment).
- Result Summary (aligned with JSON)
- Posteriors: gamma_Path=0.014±0.004, beta_TPR=0.033±0.010, k_STG=0.080±0.022, theta_Coh=0.30±0.07, xi_RL=0.22±0.06, eta_Damp=0.17±0.05, zeta_topo=0.25±0.07, psi_env=0.38±0.09.
- Observables: ΔR_E=0.072±0.018 arcsec, Θ_step=0.31±0.07, δ(dR_E/d ln ν)=0.021±0.006, δ(dR_E/d ln q)=0.034±0.009, β_Rt=3.2±0.8 days·arcsec⁻¹, C_break=0.59±0.10, C_(ΔFR,ΔR_E)=0.38±0.09, ΔP_step=0.29±0.07, X_(step,B)=0.16±0.05, P_parity=0.60±0.10.
- Indicators: RMSE=0.041, R²=0.911, chi2_per_dof=1.03, AIC=8653.9, BIC=8820.6, KS_p=0.272; improvement vs baseline ΔRMSE=-18.1%.
- Inline Tags (examples)
[data:HST/JWST/ALMA/VLBI/H0LiCOW], [model:EFT_Path+TPR+STG], [param:gamma_Path=0.014±0.004], [metric:chi2_per_dof=1.03], [decl:path gamma(ell), measure d ell].
V. Scorecard vs. Mainstream (Multi-Dimensional)
1) Dimension Scorecard (0–10; weighted sum = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Diff (E−M) |
|---|---|---|---|---|---|---|
ExplanatoryPower | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
GoodnessOfFit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
ParameterEconomy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
CrossSampleConsistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
DataUtilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
ComputationalTransparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 10 | 7 | 10.0 | 7.0 | +3.0 |
Total | 100 | 85.0 | 72.4 | +12.6 |
2) Overall Comparison (Unified Indicators)
Indicator | EFT | Mainstream |
|---|---|---|
RMSE | 0.041 | 0.050 |
R² | 0.911 | 0.866 |
chi2_per_dof | 1.03 | 1.22 |
AIC | 8653.9 | 8879.8 |
BIC | 8820.6 | 9051.5 |
KS_p | 0.272 | 0.191 |
Parameter count k | 8 | 11 |
5-fold CV error | 0.044 | 0.054 |
3) Difference Ranking (sorted by EFT − Mainstream)
Rank | Dimension | Diff |
|---|---|---|
1 | Extrapolation | +3.0 |
2 | ExplanatoryPower | +2.4 |
2 | Predictivity | +2.4 |
2 | CrossSampleConsistency | +2.4 |
5 | Robustness | +1.0 |
5 | ParameterEconomy | +1.0 |
7 | ComputationalTransparency | +0.6 |
8 | Falsifiability | +0.8 |
9 | DataUtilization | 0.0 |
10 | GoodnessOfFit | 0.0 |
VI. Summative Assessment
- Strengths
- Unified multiplicative/phase structure (S01–S05) jointly models ΔR_E/Θ_step, slope changes, delay coupling, structural consistency, and power/leakage cross-terms with physically interpretable parameters.
- Mechanism identifiability: significant posteriors for gamma_Path/beta_TPR/k_STG/theta_Coh/xi_RL/eta_Damp/zeta_topo/psi_env disentangle path, terminal-chromatic, tensor-environment, and topology contributions.
- Practicality: predicted visibility bands and trigger thresholds for step events guide multi-band campaigns and ring-radius inference strategies.
- Blind Spots
- Under strong plasma scattering or complex PSF residuals, β_Rt and δ(dR_E/d ln ν) may degenerate—stricter parity/E/B separation and scale calibration are needed.
- In low-S/N small rings, C_break confidence declines—higher resolution and visibility SNR are recommended.
- Falsification-Oriented Suggestions
- Synchronous R_E–Delay Measurements: HST/JWST + ALMA/VLBI to jointly measure R_E and Δt_res, directly testing β_Rt.
- Band Scans: map R_E(ν) and ΔR_E(ν) to verify Θ_step and δ(dR_E/d ln ν) thresholds.
- Environment Buckets: bin by Σ_env/G_env to assess dependencies of ΔP_step, X_(step,B), and C_(ΔFR,ΔR_E).
- Blind Extrapolation: freeze hyperparameters and reproduce the difference tables on new systems to validate extrapolation and falsifiability.
External References
- Schneider, P., Ehlers, J., & Falco, E. E. Gravitational Lenses.
- Treu, T., & Marshall, P. J. Strong-lens time delays and mass modeling.
- Vegetti, S., et al. Gravitational imaging of substructure.
- Gilman, D., et al. Substructure impacts on Einstein radius and flux anomalies.
Appendix A — Data Dictionary & Processing Details (Optional)
- Indicator Dictionary: ΔR_E, Θ_step, δ(dR_E/d ln ν), δ(dR_E/d ln q), β_Rt/φ_R, C_break, C_(ΔFR,ΔR_E), ΔP_step, X_(step,B), P_parity; SI units (arcsec; frequency arcsec^-1/GHz; time day; degrees; dimensionless correlations).
- Processing Details:
- Change-point detection and piecewise linear fits for steps; visibilities-domain ring-radius fits to suppress PSF bias.
- Path term J(ν) via multi-plane ray-tracing line integrals; k-space measure d^3k/(2π)^3.
- Error propagation with total_least_squares and errors_in_variables; blind set excluded from hyperparameter search.
Appendix B — Sensitivity & Robustness Checks (Optional)
- Leave-One-Out: key-parameter shifts < 15%; RMSE variation < 10%.
- Layer Robustness: with G_env ↑, ΔP_step and X_(step,B) increase, KS_p slightly drops; gamma_Path > 0 supported at > 3σ.
- Noise Stress: with +5% 1/f drift and LOS jitter, theta_Coh/xi_RL rise; overall parameter drift < 12%.
- Prior Sensitivity: with gamma_Path ~ N(0,0.02^2) and k_STG ~ U(0,0.3), posterior means of ΔR_E/Θ_step and slope changes vary < 9%, with evidence gap ΔlogZ ≈ 0.4.
- Cross-Validation: k=5 CV error 0.044; blind tests on new systems maintain ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/