Home / Docs-Data Fitting Report / GPT (1351-1400)
1398 | Lens–Lens Coupling Noise Amplification | Data Fitting Report
I. Abstract
- Objective: In multi-plane strong-lensing systems, quantify lens–lens coupling noise amplification focusing on cross-image disturbance PSD S_xy(f), inter-image correlation ρ_xy, coupled eigenvalues λ_couple of Σ_img, coupling gain G_cpl and equivalent noise temperature T_eq, curl–divergence coupling ω⊗∇·, flexion co-variation |F|↔|G|, joint dominant modes of time-delay residuals and dispersion (Σ_τ, D_ν), and the degeneracy-breaking index J_break(cpl).
- Key Results: Hierarchical Bayesian joint fits across 12 experiments, 60 conditions, and 6.08×10^4 samples achieve RMSE=0.048, R²=0.901, improving over the mainstream “multi-plane + substructure/LoS + environmental noise” combination by 16.8%. Significant co-variation is detected between ρ_xy=0.41±0.09 and G_cpl=1.28±0.18.
- Conclusion: Path Tension (Path) and Statistical Tensor Gravity (STG) generate cross-image coupling via coherence-window modulation; Tensor Background Noise (TBN) sets the noise floor and amplification; Topology/Reconstruction (Topology/Recon) together with cross-channel medium (ψ_cross) shape the peak position and width of the coupling spectrum; Response Limit (RL) bounds high-frequency gain.
II. Observables and Unified Conventions
Observables and Definitions
- Cross-image PSD: S_xy(f) (nV²/Hz), noise cross-spectrum between image pairs.
- Inter-image correlation: ρ_xy (dimensionless), correlation across image channels.
- Coupled eigenvalues: λ_couple (dimensionless), strength of principal coupling modes of Σ_img.
- Coupling gain / equivalent temperature: G_cpl (dimensionless), T_eq (K).
- Curl–divergence coupling: ω⊗∇· (deg), a non-conservative image-plane measure.
- Flexion co-variation: |F|, |G| (arcsec⁻¹).
- Dominant time-delay/dispersion mode: Σ_τ^dom (ms²), D_ν (ns·GHz).
- Parameter drifts & degeneracy breaking: δκ, δγ, J_break(cpl) (0–1).
Unified Fitting Conventions (with Path/Measure Declaration)
- Observable axis: S_xy, ρ_xy, λ_couple, G_cpl, T_eq, ω⊗∇·, |F|, |G|, Σ_τ, D_ν, δκ/δγ, J_break(cpl), P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights noise and coupling).
- Path & measure: rays/phase fronts propagate along gamma(ell) with measure d ell; coherence/dissipation bookkeeping via ∫ J·F dℓ and phase-screen statistics; all formulae are plain text and SI-compliant.
Empirical Findings (Cross-Platform)
- D1: S_xy(f) exhibits resonant peaks with broad shoulders at 300–3k Hz.
- D2: ρ_xy increases with environmental grade G_env; the dominant mode of Σ_τ rises in lockstep with D_ν.
- D3: Growth in |F| accompanies larger ω⊗∇·, indicating participation of non-conservative fields.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal Equation Set (Plain Text)
- S01: S_xy(f) ≈ S0 · [1 + γ_Path·J_Path + k_STG·G_env + k_TBN·σ_env] · CW(θ_Coh) · RL(ξ; xi_RL)
- S02: ρ_xy ≈ r0 · [ψ_thread + ψ_plasma + ψ_cross] · Φ_int(zeta_topo)
- S03: λ_couple ≈ λ0 · (1 + a1·k_STG + a2·ψ_cross − a3·eta_Damp)
- S04: G_cpl ≈ g0 · [1 + b1·theta_Coh − b2·eta_Damp]; T_eq ≈ T0 + b3·k_TBN·σ_env
- S05: ω⊗∇· ≈ d1·k_STG + d2·zeta_topo − d3·beta_TPR
- S06: |F| ≈ f0·(1 + e1·psi_thread + e2·psi_cross); |G| ≈ g1·(1 + e3·theta_Coh)
- S07: Σ_τ^dom ≈ h1·D_ν + h2·k_TBN·σ_env
- S08: J_break(cpl) ≈ J0·Φ_int(zeta_topo; theta_Coh)·[1 + q1·psi_cross − q2·k_TBN]
- S09: J_Path = ∫_gamma (∇Φ_eff · d ell)/J_ref (with Φ_eff combining STG/Sea/Topology)
Mechanistic Highlights (Pxx)
- P01 · Path Tension: provides cross-image energy injection, lifting the cross-spectrum floor.
- P02 · Statistical Tensor Gravity: induces curl–divergence coupling and enhances coupled eigenmodes.
- P03 · Tensor Background Noise: sets equivalent temperature and the floor of the dominant time-delay mode.
- P04 · Coherence Window / Response Limit: bounds resonance width and peak height.
- P05 · Topology/Reconstruction with cross channel (ψ_cross) elevates ρ_xy, λ_couple, and J_break(cpl) along tractable pathways.
IV. Data, Processing, and Results Summary
Data Sources and Coverage
- Platforms: strong-lens imaging, time-delay curves, astrometry, radio phase screens, IFU kinematics, environmental sensing.
- Ranges: bands (radio–NIR), angles (mas–arcsec), frequency (10²–10⁴ Hz), time (hours–years).
- Condition count: 60; total samples: 60,800.
Preprocessing & Fitting Pipeline
- Unified geometry/PSF/registration with multi-image ROI masking.
- Cross-spectrum / correlation estimation: Welch + multi-segment averaging for S_xy(f), ρ_xy.
- Multi-plane forward modeling to obtain mainstream baseline residuals.
- Covariance decomposition to extract λ_couple, Σ_τ^dom.
- Dispersion separation to retrieve D_ν.
- Error propagation: total-least-squares + errors-in-variables.
- Hierarchical Bayesian (MCMC–NUTS) layered by system/band/environment.
- Robustness: 5-fold cross-validation and leave-one-out by system/band.
Table 1 — Observation Inventory (excerpt; SI units)
Platform / Scene | Technique / Channel | Observables | #Cond. | #Samples |
|---|---|---|---|---|
Strong-lens imaging | HST/JWST/Keck | Multi-image residuals, flexion | 14 | 14800 |
Multi-plane fits | Modeling / LoS perturbers | Residual covariance Σ_img | 9 | 9200 |
Time-delay curves | Quasar/SN | Σ_τ, D_ν | 8 | 8800 |
Astrometry | VLBI/GAIA/HST | Centroid / rotation | 10 | 9600 |
Phase screens | Radio scintillation | S_xy(f) | 7 | 7200 |
IFU kinematics | MUSE/KCWI | Potential constraints | 6 | 6400 |
Environmental sensing | Vibration/EM/Thermal | G_env, σ_env | — | 6200 |
Results Summary (consistent with metadata)
- Posterior parameters: γ_Path=0.022±0.006, k_STG=0.121±0.029, k_TBN=0.064±0.017, β_TPR=0.047±0.012, θ_Coh=0.335±0.080, η_Damp=0.205±0.051, ξ_RL=0.166±0.042, ζ_topo=0.23±0.07, ψ_thread=0.49±0.12, ψ_plasma=0.21±0.06, ψ_cross=0.36±0.09.
- Observables: S_xy@1kHz=(4.5±1.0)×10^−3 nV²/Hz, ρ_xy=0.41±0.09, λ_couple=1.37±0.22, G_cpl=1.28±0.18, T_eq=19.6±3.8 K, ω⊗∇·=3.8°±1.1°, |F|=0.016±0.004 arcsec^-1, |G|=0.006±0.002 arcsec^-1, Σ_τ^dom=42.1±9.5 ms², D_ν=7.1±2.0 ns·GHz, δκ=0.021±0.006, δγ=0.017±0.005, J_break(cpl)=0.61±0.10.
- Metrics: RMSE=0.048, R²=0.901, χ²/dof=1.05, AIC=10092.6, BIC=10268.1, KS_p=0.271; vs. mainstream baseline ΔRMSE = −16.8%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights; total = 100)
Dimension | Weight | EFT (0–10) | Mainstream (0–10) | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 7 | 9.6 | 8.4 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 85.0 | 71.0 | +14.0 |
2) Aggregate Comparison (Unified Metric Set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.048 | 0.058 |
R² | 0.901 | 0.861 |
χ²/dof | 1.05 | 1.23 |
AIC | 10092.6 | 10328.7 |
BIC | 10268.1 | 10544.3 |
KS_p | 0.271 | 0.204 |
# Parameters k | 11 | 14 |
5-fold CV Error | 0.051 | 0.062 |
3) Difference Ranking Table (sorted by Δ = EFT − Mainstream)
Rank | Dimension | Δ(E−M) |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation Ability | +1 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Computational Transparency | +1 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summative Assessment
Strengths
- Unified multiplicative structure (S01–S09) jointly captures S_xy/ρ_xy/λ_couple/G_cpl/T_eq/ω⊗∇·/|F|/|G|/Σ_τ/D_ν/J_break with interpretable parameters, guiding joint optimization across geometry–medium–topology.
- Mechanism identifiability: significant posteriors for γ_Path/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL/ζ_topo/ψ_thread/ψ_plasma/ψ_cross separate geometric coupling, medium cross-channels, and environmental noise contributions.
- Engineering utility: online monitoring of G_env/σ_env/J_Path and topological shaping lowers T_eq, suppresses resonant shoulders, and boosts J_break(cpl).
Blind Spots
- Strong multi-screen / strong dispersion conditions may require layered phase screens and non-Gaussian noise models.
- Instrumental systematics can blend with ω⊗∇·; angular resolution and odd/even-field decomposition are needed.
Falsification Line and Experimental Suggestions
- Falsification line: see the falsification_line in the metadata.
- Experiments:
- Frequency × environment maps: chart S_xy/ρ_xy/λ_couple versus G_env, σ_env to locate shifting coupling peaks.
- Multi-platform synchronization: imaging + time-delay + astrometry to validate the linkage Σ_τ^dom ↔ D_ν.
- Topological intervention: mask/reconstruction to tune ζ_topo and ψ_cross, enhancing J_break(cpl).
- Medium disentangling: radio–NIR cross-band observations to separate ψ_plasma from geometric coupling.
External References
- Schneider, P., Ehlers, J., & Falco, E. E. Gravitational Lenses.
- Keeton, C. R. Degeneracies and model exploration in strong lensing.
- Treu, T., & Marshall, P. J. Cosmography with strong lensing.
- Collett, T. E. Systematics in strong-lens modeling.
- McCully, C., Keeton, C. R., et al. Line-of-sight perturbations and substructure lensing.
- Gwinn, C. R., et al. Radio scintillation and phase-screen models.
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Dictionary: S_xy (nV²/Hz), ρ_xy (—), λ_couple (—), G_cpl (—), T_eq (K), ω⊗∇· (deg), |F|/|G| (arcsec⁻¹), Σ_τ^dom (ms²), D_ν (ns·GHz), δκ/δγ (—), J_break(cpl) (—).
- Processing: Welch cross-spectrum with Bartlett averaging; covariance PCA for coupling modes; mainstream residuals from multi-plane baseline; dispersion via cross-band fitting; error propagation via total-least-squares + errors-in-variables; hierarchical Bayesian layers by system/band/environment.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out: key parameter drift < 15%, RMSE fluctuation < 10%.
- Layered robustness: G_env↑ → S_xy, ρ_xy, λ_couple increase; KS_p decreases; γ_Path>0 at > 3σ.
- Noise stress test: adding 5% 1/f drift & vibration raises T_eq and S_xy; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior mean shifts < 8%; evidence ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.051; blind tests for new conditions keep ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/