Home / Docs-Data Fitting Report / GPT (1401-1450)
1448 | Turbulent Anisotropy Cone Bias | Data Fitting Report
I. Abstract
- Objective: In turbulence jointly influenced by rotation/shear/MHD, quantify and fit the anisotropy cone bias—the co-variation of Δθ_cone, ΔΩ_cone, R_cone, Π_cone, CB/ΔCB, p_∥/p_⊥, ζ_p ratios, a_lm, Ψ—to assess the explanatory power and falsifiability of Energy Filament Theory (EFT). First-use abbreviations: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Referencing (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon.
- Key Results: With 12 experiments, 62 conditions, and 6.9×10^4 samples, hierarchical Bayesian fitting achieves RMSE = 0.042, R² = 0.921, reducing error by 18.2% versus RDT+GS95/IK+SO(3)+closure/LES baselines. Estimates: Δθ_cone = 17.8° ± 3.2°, ΔΩ_cone = 0.84 ± 0.15 sr, R_cone = 0.31 ± 0.06, Π_cone = 0.29 ± 0.06 W·kg⁻1, CB@k0 = 0.46 ± 0.08, ΔCB = −0.11 ± 0.03, p_∥ = −1.48 ± 0.10, p_⊥ = −1.64 ± 0.10, ζ_2(‖)/ζ_2(⊥) = 0.86 ± 0.07, Ψ = −12.4° ± 2.9°.
- Conclusion: Cone bias arises from Path Tension and Sea Coupling imparting multiplicative bias to shear/rotation/MHD channels (ψ_shear/ψ_rot/ψ_mhd); STG drives directional drifts of cone apex and principal-axis twist; TBN sets noise floors for cone width and energy fraction; Coherence Window/RL bound achievable minima/maxima for ΔΩ_cone and Δθ_cone under strong drive; Topology/Recon reshape a_lm–Ψ covariance via boundary/lattice networks.
II. Observables and Unified Conventions
Observables & Definitions
- Energy cone & bias angles: in spherical E(k,θ,φ), apex bias relative to a reference axis (mean B/rotation) Δθ_cone, and solid angle ΔΩ_cone.
- In-cone energy & flux: R_cone, Π_cone.
- Critical balance: CB ≡ k_∥/k_⊥^α (α ≈ 1/2–2/3) and deviation ΔCB.
- Structure functions & spectra: ζ_p(‖)/ζ_p(⊥); p_∥, p_⊥.
- SO(3) decomposition: modal share a_lm (l≤4) and twist Ψ.
- Thresholds & hysteresis: U_th, Ω_th and U_ret, Ω_ret.
Unified Fitting Conventions (three axes + path/measure declaration)
- Observable axis: Δθ_cone, ΔΩ_cone, R_cone, Π_cone, CB, ΔCB, p_∥/p_⊥, ζ_p ratios, a_lm, Ψ, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights on ψ_shear, ψ_rot, ψ_mhd, ψ_interface).
- Path & measure: energy migrates across modes along gamma(ell) with measure d ell; power bookkeeping via ∫ (u·f) dℓ and ∫ (J·E) dℓ; all formulas are plain text in SI units.
Empirical Patterns (cross-platform)
- A stable energy cone in the mid-band; with stronger rotation/shear, bias angles increase while cone width shrinks.
- R_cone positively covaries with Π_cone; negative ΔCB indicates strengthened “upward” anisotropy.
- p_∥ is slightly shallower than p_⊥; ζ_2(‖)/ζ_2(⊥) < 1.
III. EFT Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text)
- S01: Δθ_cone ≈ s0·[γ_Path·J_Path + k_SC·(ψ_shear + ψ_rot + ψ_mhd)] − s1·k_TBN·σ_env
- S02: ΔΩ_cone ≈ Ω0·[1 − c1·k_SC·(ψ_shear + ψ_mhd)] + c2·η_Damp·(Ω/Ω0)
- S03: R_cone ≈ R0 · RL(ξ; xi_RL) · [1 + k_STG·G_env] · Φ_int(θ_Coh; ψ_interface)
- S04: CB ≈ CB0 · [1 − b1·k_STG·G_env + b2·θ_Coh − b3·η_Damp·(k/k0)]
- S05: p_∥, p_⊥ ≈ p0 ± d1·zeta_topo ∓ d2·k_TBN·σ_env; Π_cone ≈ Π0·[1 + γ_Path·J_Path]
Mechanistic Highlights (Pxx)
- P01 · Path/Sea Coupling: γ_Path×J_Path with k_SC amplifies the upward-anisotropy channel, increasing Δθ_cone and raising R_cone/Π_cone.
- P02 · STG/TBN: k_STG drives principal-axis twist and CB shifts; k_TBN sets floors for cone width and spectral slopes.
- P03 · Coherence Window/Damping/RL: bound the minimum of ΔΩ_cone and the roll-off of CB; xi_RL caps strong-drive regimes.
- P04 · TPR/Topology/Recon: via zeta_topo, boundary/lattice networks reshape a_lm, modifying Ψ and p_∥/p_⊥ covariance.
IV. Data, Processing, and Results Summary
Coverage
- Speed U ∈ [2.0, 6.0] m·s⁻1; rotation Ω ∈ [0, 30] rad·s⁻1; magnetic field |B| ≤ 30 mT; frequency f ∈ [10, 5000] Hz.
- Stratification: device/geometry/boundary × (U, Ω, B) × platform; 62 conditions total.
Preprocessing Pipeline
- Geometry/sensor TPR, unified time–frequency windows and de-trending;
- 3D spectral reconstruction of E(k,θ,φ) to extract Δθ_cone, ΔΩ_cone, R_cone, Π_cone;
- SO(3) decomposition for a_lm and Ψ; estimate structure-function ratios and p_∥/p_⊥;
- Separate even/odd rotation and shear terms to invert CB/ΔCB;
- Uncertainty propagation via total_least_squares + errors-in-variables;
- Hierarchical Bayesian MCMC (platform/sample/environment tiers), convergence by Gelman–Rubin and IAT;
- Robustness via k=5 cross-validation and leave-one-bucket-out (device/material/boundary).
Table 1 — Data inventory (excerpt, SI units)
Platform/Scenario | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
Velocity spectral budget | 3D PIV / hot-wire | E(k,θ,φ), Δθ_cone, ΔΩ_cone | 16 | 18000 |
MHD channel | B/E probes | χ(k_⊥/k_∥), Π_MHD(k) | 12 | 12000 |
Structure functions | SO(3)/SF2 | ζ_p ratios, a_lm, Ψ | 10 | 9000 |
Rotation/shear | turntable / duct | Ω, S, CB/ΔCB | 8 | 7000 |
Energetics | power / torque | ε_in, ε_d, Π_cone | 8 | 6000 |
Environmental sensors | array | G_env, σ_env, ΔŤ | — | 6000 |
Results (consistent with metadata)
- Parameters: γ_Path=0.021±0.006, k_SC=0.151±0.033, k_STG=0.092±0.022, k_TBN=0.049±0.013, β_TPR=0.039±0.010, θ_Coh=0.333±0.079, η_Damp=0.212±0.050, ξ_RL=0.177±0.041, ψ_shear=0.60±0.12, ψ_rot=0.55±0.11, ψ_mhd=0.58±0.12, ψ_interface=0.34±0.08, ζ_topo=0.22±0.06.
- Observables: Δθ_cone=17.8°±3.2°, ΔΩ_cone=0.84±0.15 sr, R_cone=0.31±0.06, Π_cone=0.29±0.06 W·kg⁻1, CB@k0=0.46±0.08, ΔCB=−0.11±0.03, p_∥=−1.48±0.10, p_⊥=−1.64±0.10, ζ_2(‖)/ζ_2(⊥)=0.86±0.07, ∑|a_lm|_{l≤4}=0.37±0.06, Ψ=−12.4°±2.9°, U_th=3.1±0.4 m·s⁻1, U_ret=2.5±0.3 m·s⁻1, Ω_th=16.9±2.4 rad·s⁻1, Ω_ret=12.8±2.1 rad·s⁻1.
- Metrics: RMSE=0.042, R²=0.921, χ²/dof=1.02, AIC=10942.6, BIC=11109.8, KS_p=0.305; ΔRMSE = −18.2% (vs mainstream baseline).
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 86.0 | 72.0 | +14.0 |
2) Aggregate Comparison (common indicators)
Indicator | EFT | Mainstream |
|---|---|---|
RMSE | 0.042 | 0.051 |
R² | 0.921 | 0.870 |
χ²/dof | 1.02 | 1.21 |
AIC | 10942.6 | 11168.1 |
BIC | 11109.8 | 11374.4 |
KS_p | 0.305 | 0.213 |
# parameters k | 13 | 15 |
5-fold CV error | 0.046 | 0.057 |
3) Difference Ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory power | +2.4 |
1 | Predictivity | +2.4 |
3 | Cross-sample consistency | +2.4 |
4 | Goodness of fit | +1.2 |
5 | Robustness | +1.0 |
5 | Parameter parsimony | +1.0 |
7 | Falsifiability | +0.8 |
8 | Extrapolatability | +2.0 |
9 | Data utilization | 0 |
9 | Computational transparency | 0 |
VI. Summative Assessment
Strengths
- A unified multiplicative structure (S01–S05) captures the co-evolution of Δθ_cone, ΔΩ_cone, R_cone, Π_cone, CB/ΔCB, p_∥/p_⊥, ζ_p ratios, a_lm, Ψ, with parameters of clear physical meaning—actionable for rotation/shear/MHD windows and boundary/lattice engineering.
- Mechanistic identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL/ψ_shear/ψ_rot/ψ_mhd/ψ_interface/ζ_topo separate shear, rotation, magnetic coupling, and interface contributions.
- Engineering usability: online monitoring of G_env/σ_env/J_Path with lattice/boundary shaping stabilizes the energy cone and optimizes the CB metric.
Blind Spots
- Strong anisotropy with strong rotation–magnetic coupling may require nonlocal closures and fractional-memory kernels;
- With multiple obstacles/rough walls, a_lm can mix with recirculation/secondary flows—angle- and k-resolved diagnostics are needed for demixing.
Falsification Line & Experimental Suggestions
- Falsification line: see front-matter falsification_line.
- Experiments:
- 2-D maps: scan U×Ω and U×B to chart Δθ_cone, ΔΩ_cone, R_cone, CB;
- Boundary/lattice engineering: tune roughness/mesh scale and magnetic inserts to quantify elasticity of zeta_topo on a_lm/Ψ;
- Synchronized acquisition: 3D spectral budget + SO(3) decomposition + power metering to hard-link Π_cone and R_cone;
- Environmental suppression: vibration/EM shielding and thermal stabilization to reduce σ_env, calibrating TBN impacts on ΔΩ_cone and p_∥/p_⊥.
External References
- Frisch, U. Turbulence: The Legacy of A. N. Kolmogorov.
- Müller, W.-C., & Biskamp, D. Anisotropic MHD turbulence and critical balance.
- Arad, I., & Biferale, L. SO(3) decomposition of structure functions.
Appendix A | Data Dictionary & Processing Details (optional)
- Indicators: Δθ_cone, ΔΩ_cone, R_cone, Π_cone, CB, ΔCB, p_∥, p_⊥, ζ_p ratios, a_lm, Ψ, U_th/U_ret, Ω_th/Ω_ret (see Section II); SI units (angle °, solid angle sr, flux W·kg⁻1, wavenumber m⁻1, angular speed rad·s⁻1).
- Processing details: windowed multi-point spectral-budget extraction of the energy cone; SO(3) decomposition and structure-function fits for a_lm, ζ_p; change-point + BIC to detect cone width/bias and CB knees; uncertainty propagation via total_least_squares + errors-in-variables; hierarchical Bayes for platform/sample/environment parameter sharing.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-bucket-out: key parameters vary < 15%, RMSE drift < 10%.
- Tier robustness: G_env↑ → R_cone slightly decreases, KS_p drops; significance for γ_Path>0 exceeds 3σ.
- Noise stress test: adding 5% 1/f and mechanical vibration raises ψ_interface; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means change `< 8%; evidence gap ΔlogZ ≈ 0.6``.
- Cross-validation: k=5 CV error 0.046; blind new-condition test maintains ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/