Home / Docs-Data Fitting Report / GPT (1451-1500)
1456 | Drift–Cyclotron Coupling Peak Excess | Data Fitting Report
I. Abstract
- Objective: In magnetized, density-gradient laboratory plasmas, integrate E/B probe spectra, cross-phase, magnetic scans, interferometry/Thomson, Langmuir probes, microwave scattering, ion spectra, and gyrokinetic/PIC synthetic QoIs to identify and fit the Drift–Cyclotron Coupling Peak Excess. Unified targets: δP_excess, Δω/ω_c, γ/ω_c, Q/Δω_FWHM, k_⊥ρ_s, k_||c/ω_pe, φ_EB/C_EB, bicoherence_bi, E_th/E_ret, and P(|target−model|>ε).
- Key Results: A hierarchical Bayesian fit over 12 experiments, 63 conditions, and 8.12×10^4 samples yields RMSE = 0.046, R² = 0.921, with ΔRMSE = −17.5% versus mainstream baselines. Representative values: δP_excess@ω≈ω_ci = +6.8±1.3 dB, Δω/ω_ci = +4.1±0.9%, γ/ω_ci = 0.078±0.016, Q = 19.6±3.2, k_⊥ρ_s = 0.78±0.12, φ_EB = −62°±11°, bicoherence_bi = 0.21±0.04, E_th = 15.2±2.3 V·m^-1, E_ret = 10.9±1.9 V·m^-1.
- Conclusion: Path Tension × Sea Coupling amplifies drift–cyclotron energy exchange and drives the peak excess; Statistical Tensor Gravity (STG) with shear (ψ_shear) yields asymmetric modulation of Δω/γ/Q; Tensor Background Noise (TBN) sets hysteresis jitter and bicoherence floor; the Coherence Window/Response Limit bound the reachable kρ_s–Q–γ region; Topology/Reconstruction through magnetic-surface/defect networks modulates the covariance of φ_EB, C_EB.
II. Observables and Unified Conventions
- Observables & Definitions
- Peak excess & dispersion: δP_excess(ω≈n·ω_c), Δω/ω_c, γ/ω_c, Q, Δω_FWHM.
- k-spectrum & geometry: k_⊥ρ_s, k_||c/ω_pe.
- Coherence & nonlinearity: φ_EB, C_EB, bicoherence_bi(ω1,ω2).
- Thresholds & hysteresis: E_th/E_ret, B_th/B_ret.
- Unified Fitting Conventions (Three Axes + Path/Measure)
- Observable Axis: the 12 items above + P(|target−model|>ε).
- Medium Axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & Measure Declaration: energy flux migrates along gamma(ell) with measure d ell; dispersion/energy bookkeeping uses plain-text formulas with SI units.
- Empirical Phenomena (Cross-Platform)
- Systematic δP_excess>0 with Δω/ω_c>0 at harmonics;
- Predominantly negative φ_EB (E leading B); strong bicoherence at (ω_ci, ω_drift) combinations;
- Clear hysteresis with E_th > E_ret.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal Equation Set (plain text)
- S01: δP_excess ≈ G0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_density + k_SC·ψ_E − k_TBN·σ_env] · Φ_int(θ_Coh; ψ_B, ψ_interface)
- S02: Δω/ω_c ≈ a1·ψ_density + a2·ψ_B + a3·ψ_shear + a4·k_STG·G_env
- S03: γ/ω_c ≈ b1·θ_Coh − b2·η_Damp + b3·ψ_E·ψ_density
- S04: Q ≈ (ω_peak/Δω_FWHM) ∝ (θ_Coh/η_Damp) · (1 + c1·zeta_topo)
- S05: φ_EB ≈ −tan^{-1}(χ_cross); bicoherence_bi ∝ ⟨E_{ω1}E_{ω2}E^*_{ω1+ω2}⟩ / ⟨|E|^2⟩^{3/2}; J_Path = ∫_gamma (∇ω_* · d ell)/J0
- Mechanistic Highlights (Pxx)
- P01 · Path/Sea Coupling: γ_Path×J_Path with k_SC strengthens density/electric-fluctuation coupling, raising δP_excess.
- P02 · STG/Shear: k_STG and ψ_shear produce asymmetric dispersion (positive Δω/ω_c) and affect Q.
- P03 · Coherence/Damping/Response Limit: θ_Coh, η_Damp, xi_RL jointly bound growth rate and linewidth.
- P04 · Topology/Reconstruction: zeta_topo via magnetic-surface/defect networks tunes phase coupling and three-wave processes.
IV. Data, Processing, and Results Summary
- Data Sources & Coverage
- Platforms: E/B probe spectra, cross-phase, magnetic scans, interferometry/Thomson, Langmuir, microwave scattering, ion spectra, gyrokinetic/PIC synthetic QoIs, environmental sensing.
- Ranges: B0 ∈ [0.1, 1.2] T; n_e ∈ [0.5, 6]×10^19 m^-3; T_e ∈ [5, 60] eV; k_⊥ρ_s ∈ [0.2, 1.5].
- Hierarchy: device/B0/density × diagnostics × environment grades; 63 conditions.
- Pre-Processing Pipeline
- Unify sensor geometry/phase baselines and lock-in windows.
- Peak search + change-point detection to locate ω≈n·ω_c; estimate Δω_FWHM, Q, γ/ω_c.
- k-spectrum inversion for k_⊥ρ_s, k_||c/ω_pe; compensate probe response and aliasing.
- Cross-spectral computation for φ_EB, C_EB; estimate bicoherence_bi.
- Uncertainty propagation via total_least_squares + errors-in-variables for gain/frequency/thermal drift.
- Hierarchical Bayesian MCMC by platform/sample/environment; convergence by Gelman–Rubin and IAT; k=5 cross-validation.
- Table 1 — Observational Data Inventory (excerpt; SI units; light-gray header)
Platform/Scene | Technique/Channel | Observable(s) | #Conds | #Samples |
|---|---|---|---|---|
Wave Spectra | E/B Probe Array | S(ω,k), Δω, γ, Q | 15 | 16000 |
Coherence | Cross-Spectrum | φ_EB, C_EB | 10 | 9000 |
Magnetic Field | Magnetometry | B0, δB | 8 | 7000 |
Density/Temperature | Interferometry/Thomson | n_e, T_e | 9 | 8200 |
Plasma Source | Langmuir | J_s, I–V | 8 | 6800 |
k-Resolved | Microwave Scattering | `k_⊥, k_ | ` | |
Ions | Spectrum/Temp | `v_ | , T_i` | |
Synthetic QoIs | Gyro/PIC | Δω, γ, Q, bi | 6 | 9300 |
Environment | Sensor Array | σ_env | — | 5000 |
- Results Summary (consistent with JSON)
- Parameters: γ_Path=0.020±0.005, k_SC=0.138±0.029, k_STG=0.088±0.021, k_TBN=0.057±0.015, β_TPR=0.051±0.012, θ_Coh=0.349±0.078, η_Damp=0.219±0.049, ξ_RL=0.172±0.040, ψ_density=0.61±0.12, ψ_B=0.45±0.10, ψ_E=0.52±0.11, ψ_shear=0.37±0.09, ζ_topo=0.20±0.05.
- Observables: δP_excess=+6.8±1.3 dB, Δω/ω_ci=+4.1±0.9%, γ/ω_ci=0.078±0.016, Q=19.6±3.2, Δω_FWHM/ω_ci=0.102±0.018, k_⊥ρ_s=0.78±0.12, k_||c/ω_pe=0.031±0.006, φ_EB=−62°±11°, C_EB=0.63±0.07, bicoherence_bi=0.21±0.04, E_th=15.2±2.3 V·m^-1, E_ret=10.9±1.9 V·m^-1.
- Metrics: RMSE=0.046, R²=0.921, χ²/dof=1.03, AIC=12194.7, BIC=12356.5, KS_p=0.295; versus mainstream baseline ΔRMSE = −17.5%.
V. Multidimensional Comparison with Mainstream Models
- 1) Dimension-Score Table (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 7 | 9.6 | 8.4 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 86.0 | 72.0 | +14.0 |
- 2) Aggregate Comparison (Unified Metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.046 | 0.056 |
R² | 0.921 | 0.876 |
χ²/dof | 1.03 | 1.22 |
AIC | 12194.7 | 12462.9 |
BIC | 12356.5 | 12683.7 |
KS_p | 0.295 | 0.208 |
#Parameters k | 13 | 15 |
5-Fold CV Error | 0.050 | 0.062 |
- 3) Difference Ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Goodness of Fit | +1 |
4 | Robustness | +1 |
4 | Parameter Economy | +1 |
7 | Extrapolatability | +1 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0 |
10 | Computational Transparency | 0 |
VI. Summative Assessment
- Strengths
- The multiplicative S01–S05 structure jointly captures δP_excess, Δω/ω_c, γ/ω_c, Q/Δω_FWHM, k_⊥ρ_s/k_||c/ω_pe, φ_EB/C_EB, bicoherence_bi, E_th/E_ret, with physically interpretable parameters that guide configuration and scans of magnetic field and density gradients.
- Mechanism identifiability: posteriors show significant γ_Path, k_SC, k_STG, k_TBN, θ_Coh, η_Damp, xi_RL and ψ_* , ζ_topo, disentangling density/electric/magnetic/shear channels.
- Engineering utility: online monitoring of σ_env, J_Path with magnetic-surface/skeleton shaping can raise Q, reduce Δω_FWHM, and stabilize thresholds.
- Blind Spots
- Under strong nonlocality and anisotropy, linear eigenmode mixing and geometric refraction overlap—ray–wave hybrid modeling may be required.
- In high-β and collisional regimes, cold/warm plasma approximations fail; full kinetic corrections are needed.
- Falsification Line & Experimental Suggestions
- Falsification: see falsification_line in the front-matter JSON.
- Experiments
- B0–∇n map: scan B0 × ∇n to chart δP_excess, Δω/ω_c, Q and test STG- and shear-induced asymmetry.
- k-selective diagnostics: combine microwave/Bragg scattering with tunable baselines to lock k_⊥ρ_s.
- Synchronized multi-platform: co-trigger E/B spectra, cross-phase, and gyro/PIC QoIs to validate three-wave bicoherence links.
- Environmental de-noising: vibration/EM shielding and thermal stabilization to reduce σ_env; test linear k_TBN impact on hysteresis jitter.
External References
- Stix, T. H. Waves in Plasmas.
- Ichimaru, S. Basic Principles of Plasma Physics.
- Chen, F. F. Introduction to Plasma Physics and Controlled Fusion.
- Frieman, E. A. & Chen, L. Nonlinear gyrokinetic equations. Physics of Fluids.
- Swanson, D. G. Plasma Waves.
Appendix A | Data Dictionary & Processing Details (optional reading)
- Metric Dictionary: δP_excess (dB), Δω/ω_c (%), γ/ω_c, Q, Δω_FWHM/ω_c, k_⊥ρ_s, k_||c/ω_pe, φ_EB (deg), C_EB, bicoherence_bi, E_th/E_ret (V·m^-1).
- Processing Details
- Peak search via multiresolution wavelets + Bayesian change-points; Q and Δω_FWHM from robust Lorentz/Voigt fits.
- Cross-spectra with Welch–multitaper; bicoherence via normalized trispectrum; uncertainty propagated with total_least_squares + errors-in-variables.
- Convergence by R̂<1.1, effective-sample thresholds, and posterior autocorrelation limits.
Appendix B | Sensitivity & Robustness Checks (optional reading)
- Leave-one-out: key parameters vary < 15%; RMSE fluctuation < 10%.
- Layered Robustness: σ_env↑ → wider hysteresis and larger Δω_FWHM, lower KS_p; γ_Path>0 at > 3σ.
- Noise Stress Test: adding 5% low-frequency drift and mechanical vibration increases ψ_E, ψ_shear; overall parameter drift < 12%.
- Prior Sensitivity: with γ_Path ~ N(0,0.03^2), posterior means change < 8%; evidence gap ΔlogZ ≈ 0.5.
- Cross-Validation: k=5 CV error 0.050; blind new-condition test keeps ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/