Home / Docs-Data Fitting Report / GPT (1451-1500)
1458 | Enrichment of Electric-Field Dipole Sheets | Data Fitting Report
I. Abstract
- Objective: In heterogeneous media with interfacial networks, jointly analyze field imaging, surface potential arrays, impedance spectra, KPFM/EFM, high-speed morphology dynamics, and PIC/FEM synthetic QoIs to quantify and fit Enrichment of Electric-Field Dipole Sheets. Unified targets: ρ_d, θ_cov, ξ, ℓ_corr, E_in/E_out, G_⊥, P(A_d)/τ_A, R_merge/R_nucl/τ_d, κ_eff(ω)/τ_MWS, E_th, A_th/A_ret, P(|target−model|>ε).
- Key Results: A hierarchical Bayesian fit over 11 experiments, 59 conditions, and 7.31×10^4 samples yields RMSE = 0.048, R² = 0.913, with ΔRMSE = −15.8% versus mainstream baselines. Representative metrics: ρ_d = 8.1×10^-2 mm^-2, θ_cov = 36.4%, E_in/E_out = 3.7, κ_eff@1kHz = 7.8, τ_MWS = 41 ms, E_th = 22.5 V·cm^-1, A_th/A_ret = 0.36/0.26 g.
- Conclusion: Path Tension × Sea Coupling amplifies interfacial polarization and coordinates sheet nucleation–merging; Statistical Tensor Gravity (STG) imposes normal-field asymmetry; Tensor Background Noise (TBN) sets power-law tails and threshold jitter; the Coherence Window/Response Limit bound the reachable ξ–G_⊥–κ_eff domain; Topology/Reconstruction via interface/defect networks modulates the covariance of θ_cov–τ_MWS–R_merge.
II. Observables and Unified Conventions
- Observables & Definitions
- Areal Density/Coverage: ρ_d, θ_cov.
- Correlation & Morphology: correlation length ξ, correlation scale ℓ_corr from C(r).
- Field Enhancement: E_in/E_out, normal enhancement G_⊥.
- Area Distribution: P(A_d), power-law exponent τ_A.
- Dynamics: R_merge, R_nucl, lifetime τ_d.
- Dielectric/Impedance: κ_eff(ω) and Z(ω) with MWS time τ_MWS.
- Thresholds/Hysteresis: E_th, A_th/A_ret.
- Unified Fitting Conventions (Three Axes + Path/Measure)
- Observable Axis: the 12 quantities above + P(|target−model|>ε).
- Medium Axis: Sea / Thread / Density / Tension / Tension Gradient (bulk medium, energy filaments/interfaces, local polarization density, stress gradients).
- Path & Measure Declaration: potential/energy flux migrate along gamma(ell) with measure d ell; all formulas are plain text in backticks and use SI units.
- Empirical Phenomena (Cross-Platform)
- P(A_d) exhibits near power-law tails (τ_A ≈ 1.8–1.9); coverage saturates with increasing drive.
- E_in/E_out and G_⊥ rise markedly in interfacial enrichment zones.
- Clear hysteresis (A_th > A_ret); E_th co-varies with τ_MWS.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal Equation Set (plain text)
- S01: ρ_d = ρ0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_interface + k_SC·ψ_sheet − k_TBN·σ_env]
- S02: E_in/E_out ≈ 1 + a1·ψ_sheet + a2·θ_Coh − a3·η_Damp; G_⊥ ≈ Φ_int(θ_Coh; ψ_interface)
- S03: P(A_d) ∝ A_d^{-τ_A} · exp(-A_d/A_c); A_c increases with γ_Path, k_SC
- S04: κ_eff(ω) ≈ κ0 + Δκ · (1 + β_TPR·ψ_drive) / (1 + iω τ_MWS); τ_MWS ∝ ξ / D_int
- S05: E_th ≈ E0·(1 + c1·η_Damp − c2·θ_Coh); A_ret < A_th; J_Path = ∫_gamma (∇·P_int · d ell)/J0
- Mechanistic Highlights (Pxx)
- P01 · Path/Sea Coupling: γ_Path×J_Path with k_SC strengthens interfacial polarization and cooperative sheet enrichment.
- P02 · STG/TBN: k_STG imposes normal-field asymmetry; k_TBN controls threshold jitter and tail heaviness.
- P03 · Coherence/Damping/Response Limit: θ_Coh, η_Damp, xi_RL bound the ξ–G_⊥–κ_eff domain.
- P04 · Topology/Reconstruction: zeta_topo via interface/defect networks modulates the covariance of θ_cov, τ_MWS, R_merge.
IV. Data, Processing, and Results Summary
- Data Sources & Coverage
- Platforms: E-field camera, surface-potential array, impedance spectra, KPFM/EFM, high-speed imaging (merge/nucleation), Faraday charge sensing, PIC/FEM synthetic QoIs, environmental sensing.
- Ranges: A ∈ [0.1, 0.7] g; E_dc ∈ [0, 40] V·cm^-1; f ∈ [1 Hz, 1 MHz]; FOV 40×40 mm^2.
- Hierarchy: material/coating/roughness × drive (amplitude/frequency/bias) × diagnostics × environment grades; 59 conditions.
- Pre-Processing Pipeline
- Unify pixel/probe geometry and phase baselines; common lock-in window.
- Connected-component/morphology to detect sheets; compute A_d, ρ_d, θ_cov; estimate ξ, ℓ_corr via C(r).
- Derive E_in/E_out and G_⊥ by normal/tangential decomposition and system MTF de-embedding.
- Fit impedance for κ_eff(ω), τ_MWS; charge pipeline yields Qpatch(t) and nucleation/merge events.
- Uncertainty propagation using total_least_squares + errors-in-variables (gain/frequency/thermal drift).
- Hierarchical Bayesian MCMC by platform/sample/environment; convergence by Gelman–Rubin and IAT; k=5 cross-validation.
- Table 1 — Observational Data Inventory (excerpt; SI units; light-gray header)
Platform/Scene | Technique/Channel | Observable(s) | #Conds | #Samples |
|---|---|---|---|---|
Field Mapping | E-field Camera | E⊥, E∥; E_in/E_out, G_⊥ | 12 | 16500 |
Surface Potential | 128-ch Array | φ_s(x,y,t) | 9 | 12000 |
Impedance/Dielectric | Spectrum | Z(ω), κ_eff(ω), τ_MWS | 8 | 9000 |
Nanoscale Morphology | KPFM/EFM | A_d, ℓ_corr | 7 | 6800 |
Morphology Dynamics | High-Speed Imaging | R_merge, R_nucl, τ_d | 8 | 7200 |
Charge Statistics | Faraday | Qpatch(t) | 6 | 6100 |
Synthetic QoIs | PIC/FEM | E_profile, κ_eff, ξ | 6 | 9500 |
Environment | Sensor Array | σ_env | — | 5000 |
- Results Summary (consistent with JSON)
- Parameters: γ_Path=0.023±0.006, k_SC=0.161±0.033, k_STG=0.079±0.019, k_TBN=0.052±0.013, β_TPR=0.046±0.012, θ_Coh=0.327±0.074, η_Damp=0.239±0.053, ξ_RL=0.174±0.040, ψ_interface=0.36±0.08, ψ_sheet=0.58±0.11, ψ_bulk=0.41±0.09, ψ_drive=0.49±0.10, ζ_topo=0.20±0.05.
- Observables: ρ_d=8.1±1.3×10^-2 mm^-2, θ_cov=36.4%±4.8%, ξ=2.12±0.31 mm, ℓ_corr=0.86±0.14 mm, E_in/E_out=3.7±0.6, G_⊥=2.4±0.4, τ_A=1.84±0.20, R_merge=0.38±0.08 s^-1, R_nucl=0.27±0.06 s^-1, τ_d=6.3±1.2 s, κ_eff@1kHz=7.8±1.0, τ_MWS=41±7 ms, E_th=22.5±3.1 V·cm^-1, A_th=0.36±0.05 g, A_ret=0.26±0.04 g.
- Metrics: RMSE=0.048, R²=0.913, χ²/dof=1.05, AIC=12012.9, BIC=12167.4, KS_p=0.281; versus mainstream baseline ΔRMSE = −15.8%.
V. Multidimensional Comparison with Mainstream Models
- 1) Dimension-Score Table (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 7 | 9.6 | 8.4 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 85.0 | 71.0 | +14.0 |
- 2) Aggregate Comparison (Unified Metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.048 | 0.057 |
R² | 0.913 | 0.869 |
χ²/dof | 1.05 | 1.22 |
AIC | 12012.9 | 12286.7 |
BIC | 12167.4 | 12492.1 |
KS_p | 0.281 | 0.203 |
#Parameters k | 13 | 15 |
5-Fold CV Error | 0.052 | 0.063 |
- 3) Difference Ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Goodness of Fit | +1 |
4 | Robustness | +1 |
4 | Parameter Economy | +1 |
7 | Extrapolatability | +1 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0 |
10 | Computational Transparency | 0 |
VI. Summative Assessment
- Strengths
- The multiplicative S01–S05 structure jointly captures ρ_d/θ_cov, ξ/ℓ_corr, E_in/E_out/G_⊥, P(A_d)/τ_A, R_merge/R_nucl/τ_d, κ_eff/τ_MWS, E_th, A_th/A_ret, with physically interpretable parameters that guide interface engineering and drive-window design.
- Mechanism identifiability: posteriors show significant γ_Path, k_SC, k_STG, k_TBN, θ_Coh, η_Damp, xi_RL and ψ_* , ζ_topo, separating interfacial, in-sheet, and bulk contributions.
- Engineering utility: online monitoring of σ_env, J_Path and shaping of interface/defect networks raise G_⊥, enlarge ξ, and narrow hysteresis width.
- Blind Spots
- Under strong hygroscopic/electrochemical coupling, Poisson–Boltzmann and MWS models may misfit; ion migration–reaction coupling may be required.
- In the ultra-high-frequency range, detector MTF and parasitic inductance matter; hardware de-embedding and multi-port calibration are needed.
- Falsification Line & Experimental Suggestions
- Falsification: see falsification_line in the front-matter JSON.
- Experiments
- Amplitude–Frequency map: scan A × f to chart θ_cov, E_in/E_out, τ_MWS, validating the coherence window and hysteresis.
- Interface engineering: vary roughness/interlayers/surface chemistry to tune ψ_interface, ζ_topo; track covariance among A_c, G_⊥, κ_eff.
- Synchronized multi-platform: co-trigger E-field imaging/surface potential/impedance with PIC/FEM to validate the hard link ξ–τ_MWS–E_th.
- Environmental de-noising: vibration/EM shielding and thermal stabilization to reduce σ_env; test linear k_TBN impact on τ_A and threshold jitter.
External References
- Cole, K. S. & Cole, R. H. Dispersion and absorption in dielectrics. Journal of Chemical Physics.
- Wagner, K. W.; Sillars, R. W. Interfacial polarization and dielectric relaxation. Transactions of the Faraday Society.
- Jackson, J. D. Classical Electrodynamics.
- Torquato, S. Random Heterogeneous Materials.
- Cahn, J. W. & Hilliard, J. E. Free energy of a nonuniform system. Journal of Chemical Physics.
Appendix A | Data Dictionary & Processing Details (optional reading)
- Metric Dictionary: ρ_d (mm^-2), θ_cov (%), ξ/ℓ_corr (mm), E_in/E_out, G_⊥ (—), P(A_d), τ_A, R_merge/R_nucl (s^-1), τ_d (s), κ_eff (—), τ_MWS (s), E_th (V·cm^-1), A_th/A_ret (g).
- Processing Details
- Connected-component + morphology to segment sheets and estimate A_d; robustify heavy tails via quantile clipping; compute C(r) (isotropic average) for ξ, ℓ_corr.
- Impedance pipeline fits κ_eff(ω) and τ_MWS (Cole–Cole); field ratios and G_⊥ from normal/tangential decomposition with system-MTF de-embedding.
- Uncertainty propagated via total_least_squares + errors-in-variables; MCMC convergence by R̂<1.1 and effective-sample thresholds.
Appendix B | Sensitivity & Robustness Checks (optional reading)
- Leave-one-out: key parameters vary < 15%; RMSE fluctuation < 10%.
- Layered Robustness: σ_env↑ → wider hysteresis and heavier tails; KS_p drops; γ_Path>0 at > 3σ.
- Noise Stress Test: adding 5% low-frequency drift/mechanical vibration raises ψ_interface, ψ_sheet; overall parameter drift < 12%.
- Prior Sensitivity: with γ_Path ~ N(0,0.03^2), posterior means change < 8%; evidence gap ΔlogZ ≈ 0.4.
- Cross-Validation: k=5 CV error 0.052; blind new-condition test maintains ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/