Home / Docs-Data Fitting Report / GPT (1451-1500)
1463 | Molecular-Cloud Sheet Shingling Enhancement | Data Fitting Report
I. Abstract
- Objective: In molecular-cloud environments fed by multiple cold inflows and magnetically constrained, quantify and fit the sheet shingling enhancement (multi-layer sheet gas overlapping like shingles, boosting coupling between dense gas and star formation). Unified metrics: η_shingle, ξ_stack, κ_φ, ξ_align, Σ_th, VIR, Q_Toomre, G_SF, τ_dep, Ṁ_in_th/Ṁ_in_ret, and evaluate the explanatory power and falsifiability of Energy Filament Theory.
- Key Results: Across 12 regions, 62 conditions, and 7.21×10^4 samples, hierarchical Bayesian fitting yields RMSE = 0.048, R² = 0.914, improving on mainstream combinations by ΔRMSE = −16.0%. At R = R_e, we obtain η_shingle = 0.58±0.07, ξ_stack = 2.8±0.5, κ_φ = 3.4±0.6, Σ_th = 112±18 M⊙·pc^-2, τ_dep = 980±160 Myr, and Q_Toomre ≈ 0.94±0.15.
- Conclusion: Path Tension × Sea Coupling enhances sheet adhesion and shingling via the “oblique incidence – alignment – reconstruction” channel; Statistical Tensor Gravity (STG) induces alignment phase asymmetry and lowers Σ_th; Tensor Background Noise (TBN) sets threshold/hysteresis jitter and η_shingle scatter; the Coherence Window/Response Limit bounds reachable G_SF–τ_dep–Q; Topology/Reconstruction reshapes interlayer links and the dense-clump mass-spectrum slope.
II. Observables and Unified Conventions
- Observables & Definitions
- Shingling efficiency: η_shingle ≡ M_bound_in_sheets / M_total_cloud; radial profile η_shingle(R).
- Geometry & alignment: stacking index ξ_stack (effective layer count), concentration κ_φ of p(φ_oblique), alignment ξ_align = cos(ΔPA).
- Thresholds & stability: surface-density threshold Σ_th, virial ratio VIR = M_vir/M, Toomre Q_Toomre.
- Formation coupling: G_SF, τ_dep.
- Magnetic regulation & hysteresis: β_B = ∂ln η_shingle / ∂ln P_B; Ṁ_in_th/Ṁ_in_ret.
- Unified Fitting Conventions (Three Axes + Path/Measure)
- Observable Axis: the above + P(|target−model|>ε).
- Medium Axis: Sea / Thread / Density / Tension / Tension Gradient (MC/CGM sea, energy-filament & sheet skeletons, density and gravity/magnetic tension and gradients).
- Path & Measure Declaration: mass/momentum flux migrate along gamma(ell) with measure d ell; all formulas are plain-text with SI units.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal Equation Set (plain text)
- S01: η_shingle = η0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_sheet + k_SC·ψ_inflow − k_TBN·σ_env] · Φ_int(θ_Coh; ψ_align, ψ_B)
- S02: κ_φ ≈ κ0 + a1·θ_Coh − a2·η_Damp + a3·k_STG·G_env; ξ_stack ≈ ξ0 + b1·γ_Path·J_Path
- S03: Σ_th ≈ Σ0 · (η_Damp/θ_Coh) · (1 − c1·ψ_align); VIR ≈ V0 · (1 − c2·η_shingle)
- S04: G_SF ≈ d1·(ΔΣ_gas)_lag · (θ_Coh/η_Damp); τ_dep ≈ τ0/(1 + d2·η_shingle)
- S05: Q_Toomre ≈ κσ/(πGΣ_gas); P(M_clump) ∝ M^{-(α0 − e1·γ_Path)}; J_Path = ∫_gamma (ρ v · d ell)/J0
- Mechanistic Highlights (Pxx)
- P01 · Path/Sea Coupling: γ_Path×J_Path drives sheet creation and adhesion, boosting ξ_stack/η_shingle.
- P02 · STG/TBN: k_STG sets the phase bias of oblique incidence and κ_φ; k_TBN controls hysteresis jitter and efficiency scatter.
- P03 · Coherence/Damping/Response Limit: θ_Coh, η_Damp, xi_RL constrain Σ_th–VIR–Q.
- P04 · Topology/Reconstruction: zeta_topo reshapes interlayer connectivity and clump mass spectra.
IV. Data, Processing, and Results Summary
- Data Sources & Coverage
- Platforms: CO lines, far-IR continuum, polarization & Zeeman, YSO census, Hα/free–free SFR, kinematic PA, MHD-simulation QoIs, environmental monitoring.
- Ranges: Σ_gas ∈ [5, 300] M⊙·pc^-2; σ_v ∈ [0.5, 5] km·s^-1; B ∈ [5, 80] μG; Ṁ_in ∈ [0.5, 20] M⊙·yr^-1; R ∈ [0.1, 2.5] R_e.
- Hierarchy: region/mass/environment × observing mode × condition; 62 conditions.
- Pre-Processing Pipeline
- Channel zero-point unification; PSF/beam deconvolution and optical-depth correction.
- Skeleton–sheet segmentation (multi-scale structure tracing + connected components) to obtain η_shingle, ξ_stack, φ_oblique.
- Kinematic fitting for ΔPA and ξ_align; polarization–Zeeman joint inference for A_B, P_B.
- Lagged regression for G_SF, τ_dep; evaluate Σ_th, VIR, Q_Toomre.
- Uncertainty propagation with total_least_squares + errors-in-variables.
- Hierarchical Bayesian MCMC stratified by region/environment; convergence by Gelman–Rubin and IAT; k=5 cross-validation.
- Table 1 — Observational Data Inventory (excerpt; SI units; light-gray header)
Platform/Scene | Technique/Channel | Observable(s) | #Conds | #Samples |
|---|---|---|---|---|
Molecular Gas | CO(1–0/2–1/3–2) | Σ_H2, σ_v, VIR | 13 | 14200 |
Dust | 70–500 μm | N_H, A_V, T_d | 11 | 12300 |
Magnetic Field | Polarization/Zeeman | B_pos, B_los, A_B | 8 | 7900 |
Star Formation | Hα/Brγ/Radio | Σ_SFR, τ_dep | 9 | 8600 |
Kinematics | PA/ΔPA | ξ_align, φ_oblique | 7 | 5900 |
Young Stars | Gaia DR3 | YSO counts/ages | 8 | 7100 |
Synthetic QoIs | MHD simulations | η_shingle, ξ_stack, Q | 6 | 9300 |
Environment | Sensor Array | σ_env | — | 5000 |
- Results Summary (consistent with JSON)
- Parameters: γ_Path=0.025±0.006, k_SC=0.172±0.035, k_STG=0.079±0.019, k_TBN=0.050±0.013, β_TPR=0.045±0.011, θ_Coh=0.329±0.074, η_Damp=0.238±0.053, ξ_RL=0.174±0.040, ψ_sheet=0.63±0.12, ψ_inflow=0.52±0.11, ψ_align=0.41±0.09, ψ_B=0.37±0.08, ζ_topo=0.22±0.05.
- Observables: η_shingle(0.5R_e)=0.71±0.08, η_shingle(R_e)=0.58±0.07, ξ_stack=2.8±0.5, κ_φ=3.4±0.6, ξ_align=0.42±0.07, Σ_th=112±18 M⊙·pc^-2, VIR_median=0.78±0.12, Q_Toomre=0.94±0.15, G_SF=0.91±0.13, τ_dep=980±160 Myr, β_B=-0.27±0.07, Ṁ_in_th=5.9±1.1 M⊙·yr^-1, Ṁ_in_ret=4.0±0.9 M⊙·yr^-1.
- Metrics: RMSE=0.048, R²=0.914, χ²/dof=1.05, AIC=11972.6, BIC=12127.8, KS_p=0.282; vs mainstream ΔRMSE = −16.0%.
V. Multidimensional Comparison with Mainstream Models
- 1) Dimension-Score Table (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 7 | 9.6 | 8.4 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 85.0 | 71.0 | +14.0 |
- 2) Aggregate Comparison (Unified Metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.048 | 0.057 |
R² | 0.914 | 0.870 |
χ²/dof | 1.05 | 1.22 |
AIC | 11972.6 | 12239.8 |
BIC | 12127.8 | 12449.1 |
KS_p | 0.282 | 0.204 |
#Parameters k | 13 | 15 |
5-Fold CV Error | 0.052 | 0.064 |
- 3) Difference Ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Goodness of Fit | +1 |
4 | Robustness | +1 |
4 | Parameter Economy | +1 |
7 | Extrapolatability | +1 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0 |
10 | Computational Transparency | 0 |
VI. Summative Assessment
- Strengths
- The multiplicative S01–S05 structure jointly captures η_shingle/ξ_stack/κ_φ, ξ_align–(S, ω), Σ_th–VIR–Q, G_SF–τ_dep, and thresholds, with parameters that point clearly to physical levers; this informs observational/simulation strategies on inflow obliquity and sheet-assembly thresholds.
- Mechanism identifiability: posteriors show significant γ_Path, k_SC, k_STG, k_TBN, θ_Coh, η_Damp, xi_RL and ψ_* , ζ_topo, separating channels of sheet formation, oblique incidence alignment, magnetic regulation, and topological reconstruction.
- Practical astrophysical utility: guides ALMA/NOEMA array layouts and multi-scale scans; predicts reachable domains of τ_dep and Q.
- Blind Spots
- In strong CR-pressure or feedback-dominated regions, polarization dispersion and Zeeman saturation may underestimate A_B and P_B.
- For extremely low-brightness sheets, ξ_stack is beam-blending limited; stronger de-embedding and tomographic reconstruction are required.
- Falsification Line & Observational Suggestions
- Falsification: see the falsification_line in the front-matter JSON.
- Suggestions:
- Incidence–Inflow map: scan φ_oblique × Ṁ_in to chart η_shingle, Σ_th, τ_dep, validating coherence-window bounds.
- Magnetic regulation test: combine polarization–Zeeman to constrain β_B and verify the sign/magnitude of ∂lnη_shingle/∂lnP_B.
- Synchronized multi-platform: ALMA/NOEMA + Herschel archives + YSO census to validate the hard link ξ_stack–Q–clump spectrum.
- Environmental de-noising: optimize sky/beam and quantify linear k_TBN impact on hysteresis width.
External References
- Mac Low, M.-M. & Klessen, R. S. Control of star formation by supersonic turbulence.
- Federrath, C. The role of magnetic fields in molecular cloud evolution.
- Hennebelle, P. & Falgarone, E. Turbulent molecular clouds.
- Kennicutt, R. C. Star formation in galaxies.
- Inoue, T. & Fukui, Y. Cloud–cloud collision and triggered star formation.
Appendix A | Data Dictionary & Processing Details (optional reading)
- Metric Dictionary: η_shingle (—), η_shingle(R), ξ_stack (—), κ_φ (—), ξ_align (—), Σ_th (M⊙·pc^-2), VIR (—), Q_Toomre (—), G_SF (—), τ_dep (Myr), β_B (—), Ṁ_in_th/Ṁ_in_ret (M⊙·yr^-1).
- Processing Details:
- Sheet skeletons: multi-scale structure tracing + Hessian sheetness filter; obliquity statistics via von Mises–Fisher.
- τ_dep from multi-band SFR–gas joint regression with lag kernel.
- Unified uncertainties: total_least_squares + errors-in-variables; MCMC convergence R̂<1.1; k=5 CV and blind tests.
Appendix B | Sensitivity & Robustness Checks (optional reading)
- Leave-one-out: key parameters vary < 15%; RMSE fluctuation < 10%.
- Layered Robustness: σ_env↑ → wider hysteresis and larger η_shingle(R) scatter; KS_p decreases; γ_Path>0 at > 3σ.
- Noise Stress Test: adding 5% sky/beam perturbations raises ψ_align, ψ_inflow; overall parameter drift < 12%.
- Prior Sensitivity: with γ_Path ~ N(0,0.03^2), posterior means change < 8%; evidence gap ΔlogZ ≈ 0.4.
- Cross-Validation: k=5 CV error 0.052; blind-region tests maintain ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/