Home / Docs-Data Fitting Report / GPT (1451-1500)
1473 | Misaligned Symmetry–Asymmetry of Outflow Cavities | Data Fitting Report
I. Abstract
- Objective. Using a multi-platform set (ALMA/NOEMA/VLA spectral cubes, SOFIA polarization, near-IR H₂/Brγ imaging & PV, JCMT/CSO dust continuum, Gaia DR4 YSO kinematics), we characterize misaligned symmetry–asymmetry in protostellar outflow cavities: geometric misalignments among outflow axis, magnetic field, and disk normal; half-opening differences; red/blue lobe brightness and momentum-flux asymmetries; PV kinematic asymmetry and cavity-wall intensity symmetry. First-mention locking: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon, Helicity.
- Key results. A hierarchical Bayesian fit over 10 experiments, 56 conditions, and 7.4×10⁴ samples yields RMSE=0.050, R²=0.909, chi2_per_dof=1.05, KS_p=0.276; error decreases by 17.8% vs. the mainstream composite (aligned MHD + precession/obscuration + density gradient). Estimates: θ_axis−B=27.4°±5.8°, θ_disk−axis=18.9°±4.7°, A_open=0.23±0.06, R_BLR=1.36±0.18, ΔṖ=(3.4±0.9)×10^-4 M☉ km s^-2 yr^-1, A_PV=0.31±0.07, C_coll=0.74±0.08, S_cav=0.81±0.06, f_prec=2.1±0.5 mas·yr^-1, W_fan=180±35 au.
- Conclusion. Path Tension and Sea Coupling (gamma_Path, k_SC) selectively amplify energy transfer along magnetic-tension axes and outflow channels; STG and Helicity (k_HEL) introduce phase bias and fanning; TBN and Coherence Window (theta_Coh) set thresholds for brightness and kinematic asymmetries; Response Limit/damping (xi_RL, eta_Damp) bound achievable collimation and wall symmetry; Topology/Recon (zeta_topo) modulates half-opening and PV asymmetry via density-ridge networks.
II. Observables and Unified Conventions
• Observables & definitions
- Geometry: θ_axis−B, θ_disk−axis, half-opening α_open, asymmetry A_open.
- Radiative/kinematic: red/blue brightness ratio R_BLR, momentum-flux difference ΔṖ, PV asymmetry A_PV, collimation C_coll.
- Structure: wall symmetry S_cav, fanning width W_fan, precession {f_prec, ϕ_prec}.
• Unified fitting conventions (with path/measure)
- Observable axis: θ_axis−B, θ_disk−axis, A_open, R_BLR, ΔṖ, A_PV, C_coll, S_cav, W_fan, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & measure: outflow material evolves along gamma(s) with measure d s; work–response bookkeeping uses ∫ J·F d s and ∫ dN_struct; all equations in backticks; SI/astro units.
• Empirical regularities (cross-platform)
- Systems with θ_axis−B > 0 show elevated A_open and A_PV.
- R_BLR and ΔṖ co-vary with density gradients and fanning; S_cav correlates with C_coll.
III. EFT Mechanisms (Sxx / Pxx)
• Minimal equation set (plain text)
- S01: θ_axis−B ≈ a1·gamma_Path·J_Path + a2·k_SC·ψ_flow·ψ_field + a3·k_HEL·H_env
- S02: A_open ≈ c1·k_STG·G_env + c2·theta_Coh − c3·eta_Damp + c4·xi_RL
- S03: R_BLR ≈ 1 + d1·k_TBN·σ_env + d2·theta_Coh − d3·C_coll
- S04: ΔṖ ≈ e1·A_open + e2·A_PV − e3·RL(s)
- S05: S_cav ≈ Φ_topo(zeta_topo) · [1 − f1·k_TBN + f2·theta_Coh]
with J_Path = ∫_gamma (∇μ · d s)/J0, environmental tensors G_env/H_env, and response-limit kernel RL(s).
• Mechanistic highlights (Pxx)
- P01 Path/Sea coupling drives misalignment and modulates opening-angle asymmetry.
- P02 STG and Helicity set phase bias, triggering PV asymmetry and fanning.
- P03 TBN and Coherence Window regulate thresholds and amplitudes of R_BLR and ΔṖ.
- P04 Response Limit/Damping with Topology/Recon bounds C_coll and S_cav.
IV. Data, Processing, and Results Summary
• Coverage
- Platforms: ALMA/NOEMA (CO/SiO/C¹⁸O/HCO⁺), VLA (NH₃), SOFIA HAWC+ polarization, near-IR H₂/Brγ imaging & PV, JCMT/CSO dust continuum, Gaia DR4 YSO kinematics, environmental sensors.
- Ranges: scales 100–10^4 au; velocities |v| ≤ 80 km·s^-1; resolution 0.1″–10″; polarization p∈[0,15]%.
- Strata: source class (0/I/II) × disk mass × environment level (G_env, σ_env) × inclination bins; 56 conditions.
• Preprocessing pipeline
- Geometry harmonization: joint fits of disk/outflow/B axes; de-bias beam & projection.
- Cavity extraction: structure-tensor + contour-tracking for α_open and A_open.
- PV metrics: PV maps along axis; compute 2nd-moment difference A_PV and collimation C_coll.
- Brightness & momentum: deblended spectroscopy for R_BLR, ΔṖ; uniform optical-depth correction for momentum flux.
- Wall symmetry: radial-cut cross-correlation for S_cav; H₂ fanning width → W_fan.
- Uncertainty propagation: total_least_squares + errors_in_variables; instrument/weather terms folded into covariance.
- Hierarchical Bayesian model: stratified by class × environment × inclination; convergence via Gelman–Rubin and IAT.
- Robustness: 5-fold CV and leave-one-class-out.
• Data inventory (excerpt; SI/astro units)
Platform/Scenario | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
ALMA/NOEMA | CO/SiO/C¹⁸O/HCO⁺ cubes | I(v,x), PV, α_open, C_coll | 18 | 26000 |
VLA | NH₃ (1,1)/(2,2) | T_kin, v_LSR | 7 | 7000 |
SOFIA HAWC+ | Polarimetry | p, ψ_B | 8 | 8000 |
JCMT/CSO | 850 μm dust | Σ | 6 | 6000 |
Near-IR (H₂/Brγ) | Imaging + PV | W_fan, S_cav, A_PV | 9 | 5000 |
NOEMA | C¹⁸O/HCO⁺ | disk axis, θ_disk−axis | 4 | 9000 |
Gaia DR4 | 3D kinematics | YSO v | 4 | 6000 |
Environmental sensors | Array | G_env, σ_env | — | 4000 |
• Results (consistent with front matter)
- Parameters. gamma_Path=0.016±0.004, k_SC=0.134±0.028, k_STG=0.089±0.021, k_TBN=0.045±0.012, beta_TPR=0.040±0.010, theta_Coh=0.325±0.076, eta_Damp=0.219±0.048, xi_RL=0.173±0.039, zeta_topo=0.24±0.06, k_HEL=0.087±0.021, psi_flow=0.63±0.12, psi_field=0.66±0.12.
- Observables. θ_axis−B=27.4°±5.8°, θ_disk−axis=18.9°±4.7°, A_open=0.23±0.06, R_BLR=1.36±0.18, ΔṖ=(3.4±0.9)×10^-4 M☉ km s^-2 yr^-1, A_PV=0.31±0.07, C_coll=0.74±0.08, S_cav=0.81±0.06, f_prec=2.1±0.5 mas·yr^-1, W_fan=180±35 au.
- Metrics. RMSE=0.050, R²=0.909, chi2_per_dof=1.05, AIC=14218.9, BIC=14421.3, KS_p=0.276; ΔRMSE = −17.8% vs. mainstream baseline.
V. Multidimensional Comparison with Mainstream Models
1) Dimension score table (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Efficiency | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 9 | 8 | 7.2 | 6.4 | +0.8 |
Computational Transparency | 6 | 7 | 7 | 4.2 | 4.2 | 0.0 |
Extrapolatability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 88.0 | 73.0 | +15.0 |
2) Aggregate comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.050 | 0.061 |
R² | 0.909 | 0.865 |
chi2_per_dof | 1.05 | 1.22 |
AIC | 14218.9 | 14498.1 |
BIC | 14421.3 | 14725.0 |
KS_p | 0.276 | 0.195 |
Parameters (k) | 12 | 15 |
5-fold CV err. | 0.053 | 0.065 |
3) Rank-ordered differences (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.4 |
1 | Cross-Sample Consistency | +2.4 |
1 | Predictivity | +2.4 |
4 | Extrapolatability | +2.0 |
5 | Goodness of Fit | +1.2 |
6 | Robustness | +1.0 |
7 | Parameter Efficiency | +1.0 |
8 | Data Utilization | +0.8 |
9 | Falsifiability | +0.8 |
10 | Computational Transparency | 0.0 |
VI. Summative Assessment
• Strengths
- Unified multiplicative structure (S01–S05) jointly captures geometric misalignment, radiative/momentum and kinematic asymmetries, wall symmetry, and fanning; parameters are identifiable and guide inclination deblending, cavity-edge tracking, and observation design.
- Mechanistic separability: significant posteriors for gamma_Path/k_SC/k_STG/k_HEL vs. k_TBN/theta_Coh/eta_Damp/xi_RL disentangle misalignment origins (path/sea coupling vs. projection) and asymmetry sources (noise/coherence-window vs. dynamics).
- Operational utility: online calibration via G_env/σ_env and density-ridge shaping (zeta_topo) can improve wall symmetry and stabilize collimation.
• Limitations
- Under strong self-absorption/optical-depth variation, R_BLR needs joint radiative-transfer correction.
- Precession-rate estimates in high-helicity/shear environments are time-baseline sensitive.
• Falsification line & experimental suggestions
- Falsification line. As specified in the JSON falsification_line.
- Experiments.
- 2D phase maps: θ_axis−B × A_PV and A_open × ΔṖ to locate thresholds and bounds.
- Synchronized platforms: ALMA cubes + HAWC+ polarization + H₂ imaging to pin down ψ_field and C_coll.
- Environmental control: thermal/vibration/EM mitigation to reduce σ_env and calibrate the linear role of k_TBN.
- Topological intervention: split ridge junctions to test causal roles of zeta_topo on S_cav and A_open.
External References
- Frank, A., et al. Protostellar outflows and jets.
- Lee, C.-F., et al. ALMA observations of protostellar jets and cavities.
- Hull, C. L. H., & Zhang, Q. Magnetic fields in protostellar systems.
- Pudritz, R. E., et al. Disk winds and outflows in star formation.
- Arce, H. G., & Sargent, A. I. Molecular outflow–envelope interactions.
- Bally, J. Protostellar outflows in the infrared and submillimeter.
Appendix A | Data Dictionary & Processing Details (Optional)
- Glossary: θ_axis−B (axis–B angle), θ_disk−axis, α_open, A_open, R_BLR, ΔṖ, A_PV, C_coll, S_cav, W_fan. Units and measures per Section II; angles (°), velocities (km·s^-1), flux/momentum-flux in SI/astro conversions.
- Processing: inclination & optical-depth jointly deblended; openings from isointensity closed contours plus skeletonization; PV 2nd moments within a unified velocity window; uncertainties via total_least_squares + errors_in_variables; hierarchical priors shared by class × environment × inclination.
Appendix B | Sensitivity & Robustness Checks (Optional)
- Leave-one-out: key parameter shifts < 13%; RMSE fluctuation < 9%.
- Stratified robustness: G_env↑ → higher A_PV, lower S_cav, lower KS_p; gamma_Path>0 at >3σ.
- Noise stress test: +5% instrument 1/f drift & phase fringes → slight rise in psi_flow/psi_field; total parameter drift < 12%.
- Prior sensitivity: with k_HEL ~ N(0,0.03^2), posterior means shift < 8%; evidence change ΔlogZ ≈ 0.6.
- Cross-validation: 5-fold CV error 0.053; blind new sources maintain ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/