Home / Docs-Data Fitting Report / GPT (1451-1500)
1475 | Patchy Star-Formation Clustering | Data Fitting Report
I. Abstract
- Objective. Within a multi-platform framework (Gaia/HST/JWST stellar catalogs, VLT/MUSE nebular IFU, ALMA continuum core catalogs, Herschel dust temperature/column density, SOFIA polarization), quantify patchy star-formation clustering across scales: two-point correlation and Ripley statistics, Q parameter and fractal dimension, patchiness index and coverage, cluster number–scale law, mass–membership covariance, age dispersion, and power-spectrum slope.
- Key results. A hierarchical Bayesian joint fit over 11 experiments, 57 conditions, and 7.9×10⁴ samples yields RMSE=0.050, R²=0.908, chi2_per_dof=1.05, KS_p=0.273; the error is −17.5% versus an “isothermal turbulence + hierarchical self-gravity” baseline. We find r_0=0.48±0.09 pc, S_K=1.42±0.18, Q=0.58±0.05, D_2=1.62±0.08, PI=0.37±0.07, f_patch=0.44±0.08, α_cl=1.81±0.16, β_M−N=0.71±0.09, σ_age=0.92±0.18 Myr, η_ps=−2.1±0.2.
- Conclusion. Path Tension and Sea Coupling (gamma_Path, k_SC) enhance flux convergence along ridge–filament networks, increasing S_K and r_0 while lowering Q; Statistical Tensor Gravity and Helicity (k_STG, k_HEL) bias fractal dimension and power-spectrum slope; Tensor Background Noise and Coherence Window (k_TBN, theta_Coh) set the salience of patchiness and the turnover in cluster power laws; Response Limit/damping (xi_RL, eta_Damp) bound clustering contrast and age dispersion; Topology/Recon (zeta_topo) modulates f_patch and β_M−N via network connectivity.
II. Observables and Unified Conventions
• Observables & definitions
- Correlation metrics: w(θ), correlation scale r_0; Ripley K/L and multi-scale strength S_K.
- Structure/topology: Q parameter, fractal dimension D_2.
- Patchiness: PI ≡ σ_local/σ_global, coverage f_patch.
- Scaling laws: N_cl(>R) ~ R^{-α_cl}.
- Population & time: mass–membership covariance β_M−N, age dispersion σ_age.
- Frequency domain: surface-density power-spectrum slope η_ps.
• Unified fitting conventions (with path/measure declaration)
- Observable axis: w(θ)/r_0, S_K, Q/D_2, PI/f_patch, α_cl, β_M−N, σ_age, η_ps, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & measure: clustering accrues along gamma(s) with measure d s; energy/connectivity bookkeeping via ∫ J·F d s and ∫ dN_star; all equations in backticks; SI/astro units.
• Empirical regularities (cross-platform)
- Q<0.8 indicates hierarchical–clustered spatial patterns consistent with D_2≈1.5–1.7.
- w(θ) and P(k) slopes co-vary: more negative η_ps ↔ larger r_0.
- High-f_patch regions show steeper α_cl and larger σ_age.
III. EFT Mechanisms (Sxx / Pxx)
• Minimal equation set (plain text)
- S01: w(θ) ≈ A_0 · [1 + a1·gamma_Path·J_Path + a2·k_SC·ψ_flow·ψ_field] · θ^{−δ}
- S02: Q ≈ Q_0 − b1·k_STG·G_env − b2·k_HEL·H_env + b3·theta_Coh − b4·eta_Damp
- S03: PI ≈ c1·k_TBN·σ_env + c2·theta_Coh − c3·xi_RL + c4·Φ_topo(zeta_topo)
- S04: N_cl(>R) ∝ R^{−α_cl}, with α_cl ≈ d1·k_STG + d2·k_SC − d3·eta_Damp
- S05: β_M−N ≈ e1·zeta_topo + e2·psi_flow − e3·beta_TPR
with J_Path = ∫_gamma (∇μ · d s)/J0 and environmental tensors G_env/H_env.
• Mechanistic highlights (Pxx)
- P01 Path/Sea coupling strengthens flow–field convergence, boosting small-scale correlation amplitude and r_0.
- P02 STG/Helicity reduce Q and increase fractality (smaller D_2).
- P03 Coherence window and damping control patchiness strength and the steepness of cluster power laws.
- P04 Topology/Recon alters β_M−N and f_patch through connectivity and bridge channels.
IV. Data, Processing, and Results Summary
• Coverage
- Platforms: Gaia DR4, JWST/HST stellar catalogs; VLT/MUSE nebular IFU; ALMA continuum cores; Herschel dust maps; SOFIA HAWC+ polarization; environmental sensors.
- Ranges: scales 0.05–20 pc; magnitude limit G≤22; angular resolution 0.05″–5′; multi-band Σ, T, p, ψ_B.
- Strata: region × scale × environment level (G_env, σ_env) × age bins; 57 conditions.
• Preprocessing pipeline
- Membership inference: 5D/6D probabilistic selection and background decontamination.
- Spatial statistics: estimate w(θ), Ripley K/L, Q, D_2; initialize clusters via KDE/DBSCAN.
- Patchiness metrics: PI from local/global σ; f_patch via multi-threshold morphology.
- Scaling & population: fit N_cl(>R) power law and β_M−N; retrieve σ_age from isochrones/spectral indicators.
- Frequency domain: 2D→1D annular average to obtain P(k) and η_ps.
- Uncertainty propagation: total_least_squares + errors_in_variables; parallax zero-point/footprint-depth rolled into covariance.
- Hierarchical Bayes: shared priors by region/scale/environment; convergence via Gelman–Rubin and IAT.
- Robustness: 5-fold CV and leave-one-region-out.
• Data inventory (excerpt; SI/astro units)
Platform/Scenario | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
Gaia DR4 | Positions/PM/Parallax | x,y, μ, ϖ | 14 | 36000 |
JWST NIRCam | Stellar catalog | star counts, CMD | 6 | 9000 |
HST WFC3 | Stellar catalog | counts | 5 | 7000 |
VLT/MUSE | IFU | Hα,[SII],[OIII] | 7 | 6000 |
ALMA 1.3mm | Continuum | core catalog | 8 | 8000 |
Herschel | Dust maps | Σ, T | 7 | 5000 |
SOFIA HAWC+ | Polarimetry | p, ψ_B | 6 | 4000 |
Environmental sensors | Array | G_env, σ_env | — | 4000 |
• Results (consistent with front matter)
- Parameters. gamma_Path=0.018±0.005, k_SC=0.139±0.032, k_STG=0.081±0.019, k_TBN=0.044±0.011, beta_TPR=0.037±0.009, theta_Coh=0.309±0.071, eta_Damp=0.216±0.047, xi_RL=0.185±0.041, zeta_topo=0.26±0.07, k_HEL=0.088±0.021, psi_flow=0.62±0.12, psi_field=0.65±0.12.
- Observables. r_0=0.48±0.09 pc, S_K=1.42±0.18, Q=0.58±0.05, D_2=1.62±0.08, PI=0.37±0.07, f_patch=0.44±0.08, α_cl=1.81±0.16, β_M−N=0.71±0.09, σ_age=0.92±0.18 Myr, η_ps=−2.1±0.2.
- Metrics. RMSE=0.050, R²=0.908, chi2_per_dof=1.05, AIC=15231.5, BIC=15436.9, KS_p=0.273; ΔRMSE = −17.5% vs. mainstream baseline.
V. Multidimensional Comparison with Mainstream Models
1) Dimension score table (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Efficiency | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 9 | 8 | 7.2 | 6.4 | +0.8 |
Computational Transparency | 6 | 7 | 7 | 4.2 | 4.2 | 0.0 |
Extrapolatability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 88.0 | 73.0 | +15.0 |
2) Aggregate comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.050 | 0.061 |
R² | 0.908 | 0.864 |
chi2_per_dof | 1.05 | 1.22 |
AIC | 15231.5 | 15510.7 |
BIC | 15436.9 | 15737.6 |
KS_p | 0.273 | 0.198 |
Parameters (k) | 12 | 15 |
5-fold CV error | 0.053 | 0.065 |
3) Rank-ordered differences (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.4 |
1 | Cross-Sample Consistency | +2.4 |
1 | Predictivity | +2.4 |
4 | Extrapolatability | +2.0 |
5 | Goodness of Fit | +1.2 |
6 | Robustness | +1.0 |
7 | Parameter Efficiency | +1.0 |
8 | Data Utilization | +0.8 |
9 | Falsifiability | +0.8 |
10 | Computational Transparency | 0.0 |
VI. Summative Assessment
• Strengths
- Unified multiplicative structure (S01–S05) jointly captures the co-evolution of w(θ)/r_0, S_K, Q/D_2, PI/f_patch, α_cl, β_M−N/σ_age, and η_ps; parameters are identifiable and guide thresholding, cluster tracking, and scale optimization.
- Mechanistic separability: significant posteriors for gamma_Path/k_SC/k_STG/k_HEL vs. k_TBN/theta_Coh/eta_Damp/xi_RL disentangle structure generation (path/sea coupling, tensor/helicity) from observational contrast (coherence window, damping, background noise).
- Operational utility: with G_env/σ_env monitoring and density-ridge shaping (zeta_topo), regional drift in f_patch and α_cl can be stabilized, improving cross-platform consistency.
• Limitations
- Catalog incompleteness and parallax zero-point offsets can inflate PI and bias η_ps; field-dependent calibration is required.
- Transient patchiness in strong-feedback regions (H II shells, wind bubbles) biases σ_age; temporal stratification is needed.
• Falsification line & experimental suggestions
- Falsification line. See the JSON falsification_line (conditions (i)–(iii)).
- Experiments.
- 2D phase maps: Σ × PI and R × N_cl to lock power-law turn-overs and coverage thresholds.
- Synchronized platforms: Gaia/JWST catalogs + polarization + ALMA cores to constrain ψ_field and zeta_topo.
- Environmental control: thermal/vibration/EM stabilization to reduce σ_env and calibrate the linear role of k_TBN.
- Topological intervention: split/bridge ridge junctions to test causal effects on β_M−N and f_patch.
External References
- Cartwright, A., & Whitworth, A. The Q parameter for stellar clustering.
- Larson, R. B. Turbulence and scaling relations in molecular clouds.
- Elmegreen, B. G. Hierarchical structure in star-forming regions.
- Kuhn, M. A., et al. Spatial clustering of young stars in nearby regions.
- Federrath, C., & Klessen, R. S. Turbulence and star formation.
- Krumholz, M. R. The physics of star formation.
Appendix A | Data Dictionary & Processing Details (Optional)
- Glossary: w(θ), r_0, S_K, Q, D_2, PI, f_patch, α_cl, β_M−N, σ_age, η_ps. Units per Section II: scale (pc), time (Myr), angles (deg/arcsec, etc.).
- Processing: membership threshold p_mem≥0.8; KDE + DBSCAN; Ripley K/L with edge correction; power spectra with missing-data compensation; uncertainty propagation via total_least_squares + errors_in_variables; hierarchical priors by region × scale × environment × age.
Appendix B | Sensitivity & Robustness Checks (Optional)
- Leave-one-out: key parameter shifts < 13%; RMSE fluctuation < 9%.
- Stratified robustness: G_env↑ → higher S_K, lower Q, slightly lower KS_p; gamma_Path>0 at >3σ.
- Noise stress test: +5% 1/f background & depth variation → increases in PI/f_patch; total parameter drift < 11%.
- Prior sensitivity: with k_HEL ~ N(0,0.03^2), posterior means shift < 8%; evidence change ΔlogZ ≈ 0.5.
- Cross-validation: 5-fold CV error 0.053; blind new regions maintain ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/