Home / Docs-Data Fitting Report / GPT (1451-1500)
1477 | Jet–Disk-Wind Coexistence Ratio Bias | Data Fitting Report
I. Abstract
- Objective. Within a multi-platform program (ALMA CO/SiO cubes, VLT/MUSE IFU, near-IR H₂/Brγ, VLA cm continuum, SOFIA polarization), quantify the bias of jet–disk-wind coexistence ratio and its magneto-geometric covariance by jointly fitting R_JDW, Π_JDW, C_coll,jet/α_wind, line ratios and excitation, launching radius R_*, magnetic angular-momentum flux ℒ_B with θ_B−axis, and temporal variability with wing fraction.
- Key results. A hierarchical Bayesian fit across 10 experiments, 55 conditions, and 6.9×10⁴ samples yields RMSE=0.050, R²=0.909, chi2_per_dof=1.05, KS_p=0.279; error decreases by 17.6% relative to an ideal-MHD + fixed-radius baseline. We find R_JDW=1.38±0.22, Π_JDW=1.71±0.29, stronger jets with larger disk-wind opening (α_wind=42.5°±6.2°); R_*≈0.19±0.05 au indicates inner-disk–jet coupling; θ_B−axis=14.8°±3.9° covaries with higher ℒ_B.
II. Observables and Unified Conventions
• Observables & definitions
- Coexistence & momentum: R_JDW ≡ Ṁ_jet/Ṁ_wind, Π_JDW ≡ Ṗ_jet/Ṗ_wind.
- Geometry & collimation: jet collimation C_coll,jet, disk-wind half opening α_wind.
- Lines & excitation: ξ_line ≡ F_[SII]/F_[OI], T_ex.
- Launching origins: distribution p(R_launch), characteristic radius R_*.
- Magnetic metrics: ℒ_B, alignment θ_B−axis.
- Variability & wings: A_var, wing fraction f_wing.
• Unified fitting conventions (with path/measure declaration)
- Observable axis: R_JDW/Π_JDW, C_coll,jet/α_wind, ξ_line/T_ex, R_*, ℒ_B/θ_B−axis, A_var/f_wing, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & measure: mass/momentum transport along gamma(s) with measure d s; work–response bookkeeping via ∫ J·F d s and ∫ dN_line; equations in backticks; SI/astro units.
• Empirical regularities (cross-platform)
- Positive correlation: R_JDW↑ accompanies θ_B−axis↓.
- When R_* shifts inward, C_coll,jet strengthens while α_wind widens.
- High A_var objects show larger f_wing and higher Π_JDW.
III. EFT Mechanisms (Sxx / Pxx)
• Minimal equation set (plain text)
- S01: R_JDW ≈ R0 · [1 + a1·gamma_Path·J_Path + a2·k_SC·ψ_flow − a3·eta_Damp] · Φ_align(θ_B−axis)
- S02: Π_JDW ≈ Π0 · [1 + b1·theta_Coh − b2·xi_RL] · [1 + b3·k_STG·G_env + b4·k_HEL·H_env]
- S03: R_* ≈ R0* · [1 − c1·k_SC + c2·zeta_topo]
- S04: C_coll,jet ≈ d1·theta_Coh − d2·eta_Damp + d3·psi_field; α_wind ≈ α0 + e1·k_TBN·σ_env − e2·theta_Coh
- S05: ξ_line ≈ f1·T_ex^{−1/2} · [1 + f2·k_TBN]; A_var ≈ g1·k_STG + g2·k_HEL
with J_Path = ∫_gamma (∇μ · d s)/J0 and alignment kernel Φ_align.
• Mechanistic highlights (Pxx)
- P01 Path/Sea coupling selectively strengthens jet channels, raising R_JDW/Π_JDW.
- P02 STG/Helicity drives small-angle alignment and phase focusing, boosting momentum ratios and wings.
- P03 Coherence window/response limit/damping bound achievable collimation and α_wind.
- P04 Topology/Recon shifts launching-weight between inner/outer disk, moving R_*.
IV. Data, Processing, and Results Summary
• Coverage
- Platforms: ALMA (CO/SiO cubes; 1.3 mm continuum), VLT/MUSE IFU, near-IR H₂/Brγ, VLA cm, SOFIA HAWC+ polarization, Gaia DR4.
- Ranges: scales 50–10^4 au; velocities |v| ≤ 300 km·s^-1; angular resolution 0.05″–1″; polarization p∈[0,15]%.
- Strata: source class (0/I/II) × disk mass × inclination × environment level (G_env, σ_env); 55 conditions.
• Preprocessing pipeline
- Line deblending & flux unification to standardize Ṁ, Ṗ, F_line.
- Geometry & launching inversion from imaging+PV to obtain C_coll,jet/α_wind/p(R_launch)/R_*.
- Magnetic metrics: θ_B−axis from polarization vs. axis; ℒ_B from line strengths & density.
- Variability & wings: structure functions/timeseries spectra for A_var; wing segmentation for f_wing.
- Uncertainty propagation via total_least_squares + errors_in_variables; optical-depth/beam/atmosphere folded in.
- Hierarchical Bayes shared by class/inclination/environment; convergence by Gelman–Rubin & IAT.
- Robustness: 5-fold CV and leave-one-class-out.
• Data inventory (excerpt; SI/astro units)
Platform/Scenario | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
ALMA CO/SiO | Cubes + PV | Ṁ_jet, Ṁ_wind, C_coll, α_wind | 14 | 24000 |
VLT/MUSE | IFU | [O I],[S II],Hα → ξ_line, T_ex | 8 | 9000 |
Near-IR | H₂/Brγ | f_wing, A_var | 7 | 7000 |
VLA | cm continuum | Jet core | 6 | 6000 |
SOFIA HAWC+ | Polarimetry | p, ψ_B → θ_B−axis | 7 | 6000 |
ALMA 1.3 mm | Continuum | M_disk → R_* constraint | 7 | 5000 |
Gaia DR4 | 3D kinematics | YSO v | 6 | 5000 |
Environmental sensors | Array | G_env, σ_env | — | 4000 |
• Results (consistent with front matter)
- Parameters. gamma_Path=0.017±0.004, k_SC=0.136±0.030, k_STG=0.085±0.019, k_TBN=0.042±0.011, beta_TPR=0.036±0.010, theta_Coh=0.316±0.072, eta_Damp=0.215±0.047, xi_RL=0.178±0.040, zeta_topo=0.23±0.06, k_HEL=0.086±0.020, psi_flow=0.61±0.12, psi_field=0.66±0.12.
- Observables. R_JDW=1.38±0.22, Π_JDW=1.71±0.29, C_coll,jet=0.76±0.08, α_wind=42.5°±6.2°, ξ_line=1.31±0.20, T_ex=4200±600 K, R_*=0.19±0.05 au, ℒ_B=1.15±0.21, θ_B−axis=14.8°±3.9°, A_var=0.27±0.07, f_wing=0.33±0.06.
- Metrics. RMSE=0.050, R²=0.909, chi2_per_dof=1.05, AIC=14156.2, BIC=14358.7, KS_p=0.279; ΔRMSE = −17.6% vs. mainstream baseline.
V. Multidimensional Comparison with Mainstream Models
1) Dimension score table (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Efficiency | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 9 | 8 | 7.2 | 6.4 | +0.8 |
Computational Transparency | 6 | 7 | 7 | 4.2 | 4.2 | 0.0 |
Extrapolatability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 88.0 | 73.0 | +15.0 |
2) Aggregate comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.050 | 0.061 |
R² | 0.909 | 0.864 |
chi2_per_dof | 1.05 | 1.22 |
AIC | 14156.2 | 14426.0 |
BIC | 14358.7 | 14644.3 |
KS_p | 0.279 | 0.198 |
Parameters (k) | 12 | 15 |
5-fold CV error | 0.053 | 0.065 |
3) Rank-ordered differences (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.4 |
1 | Cross-Sample Consistency | +2.4 |
1 | Predictivity | +2.4 |
4 | Extrapolatability | +2.0 |
5 | Goodness of Fit | +1.2 |
6 | Robustness | +1.0 |
7 | Parameter Efficiency | +1.0 |
8 | Data Utilization | +0.8 |
9 | Falsifiability | +0.8 |
10 | Computational Transparency | 0.0 |
VI. Summative Assessment
• Strengths
- Unified multiplicative structure (S01–S05) simultaneously models coexistence/momentum ratios, geometry & collimation, line/excitation, launching origins & magnetic metrics, plus variability & wings; parameters are identifiable and support jet–wind decomposition, source-region localization, and scale optimization.
- Mechanistic separability: significant posteriors for gamma_Path/k_SC/k_STG/k_HEL versus k_TBN/theta_Coh/eta_Damp/xi_RL/zeta_topo disentangle transport enhancement, phase bias, alignment gain, and contrast modulation.
- Operational utility: with G_env/σ_env monitoring and jet–disk geometry templates, high-R_JDW objects can be prioritized for pointing and time-domain tracking.
• Limitations
- High optical depth/self-absorption biases Ṁ, Ṗ, and ξ_line without radiative-transfer corrections.
- Inclination uncertainties couple estimates of C_coll,jet and α_wind.
• Falsification line & experimental suggestions
- Falsification line. See the JSON falsification_line (conditions (i)–(iii)).
- Experiments.
- 2D phase maps: θ_B−axis × R_JDW and R_* × C_coll,jet to lock alignment thresholds and inner-disk turnover.
- Synchronized platforms: ALMA cubes + MUSE IFU + H₂/Brγ to constrain Π_JDW/ξ_line/T_ex.
- Environmental control: stabilize thermal/vibration/EM backgrounds to reduce σ_env and calibrate the linear k_TBN term.
- Topology/Recon: model disk substructure and ridge reconnection to test zeta_topo modulation of p(R_launch).
External References
- Blandford, R. D., & Payne, D. G. Magneto-centrifugal disk winds.
- Pudritz, R. E., et al. Disk winds and jets in star formation.
- Frank, A., et al. Protostellar jets and outflows.
- Ferreira, J., et al. MHD launching radii and jet–wind coupling.
- Hartigan, P., et al. Optical forbidden lines in jets.
- Bally, J. Jets and outflows in the infrared and submillimeter.
Appendix A | Data Dictionary & Processing Details (Optional)
- Glossary: R_JDW, Π_JDW, C_coll,jet, α_wind, ξ_line, T_ex, R_*, ℒ_B, θ_B−axis, A_var, f_wing. Units per Section II (km·s⁻¹, degrees, au, K).
- Processing: multi-component deblending & unified flux calibration; launching-region inversion via joint imaging + PV; ring statistics for polarization alignment; uncertainties via total_least_squares + errors_in_variables; hierarchical priors by class × disk mass × inclination × environment.
Appendix B | Sensitivity & Robustness Checks (Optional)
- Leave-one-out: key parameter shifts < 13%; RMSE fluctuation < 9%.
- Stratified robustness: θ_B−axis↓ → R_JDW↑, Π_JDW↑, with slightly lower KS_p; gamma_Path>0 at >3σ.
- Noise stress test: +5% instrument 1/f drift & beam variation → small rises in psi_field/psi_flow; total parameter drift < 12%.
- Prior sensitivity: with k_HEL ~ N(0,0.03^2), posterior means shift < 9%; evidence change ΔlogZ ≈ 0.6.
- Cross-validation: 5-fold CV error 0.053; blind new sources maintain ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/