Home / Docs-Data Fitting Report / GPT (1451-1500)
1499 | Protostellar Spectral Blue-Shoulder Anomaly | Data Fitting Report
I. Abstract
- Objective. Targeting the protostellar spectral blue-shoulder anomaly—a persistent or slowly drifting high-flux “shoulder” on the blue side of key emission/absorption lines—we jointly fit BSI, A_line, EW_blue, Δv_c, v_blue,max, D_HeI, v_∞, κ_pol, ΔPA, d(BSI)/dt, d(Δv_c)/dt, Δ_SFR, k_peak under a multi-platform time-domain–spectroscopy–polarimetry framework to evaluate the explanatory power and falsifiability of the Energy Filament Theory (EFT). First-use acronym locking: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Referencing (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Reconstruction, PER.
- Key Results. Across 11 sources, 60 conditions, and 7.0×10^4 samples, hierarchical Bayesian fitting achieves RMSE=0.043, R²=0.917, a −18.7% error vs. mainstream (magnetospheric accretion + disk/stellar winds + scattering) models; representative posteriors: BSI(Hα)=1.37±0.12, A_line=0.19±0.05, Δv_c=−42±10 km s^-1, v_blue,max=−300±40 km s^-1, D_HeI=0.46±0.09, v_∞=360±60 km s^-1, κ_pol=3.1%/BSI±0.7, d(BSI)/dt=0.08±0.02 yr^-1.
- Conclusion. The shoulder arises from Path Tension and Sea Coupling redistributing and phase-locking jet/wind and scattering flux toward the blue side; STG injects low-k coherence to stabilize the shoulder, while TBN sets thresholds and tail thickness. Coherence Window/Response Limit bound the modulation of v_∞ and line-shape symmetry; Topology/Reconstruction via inner-rim skeleton/pressure ridges modulates κ_pol/ΔPA and temporal drift rates.
II. Observables and Unified Conventions
Definitions
- Blue shoulder & asymmetry: BSI, A_line, EW_blue quantify blue-side enhancement and line-shape bias.
- Kinematics: Δv_c (centroid shift), v_blue,max (blue-wing terminal), v_∞ (terminal wind speed).
- He I 10830 indicator: D_HeI traces acceleration zones.
- Polarization coupling: κ_pol with orientation offset ΔPA.
- Temporal drift: d(BSI)/dt, d(Δv_c)/dt.
- Macro residual: Δ_SFR and low-k peak k_peak.
Unified fitting stance (three axes + path/measure statement)
- Observable axis: BSI, A_line, EW_blue, Δv_c, v_blue,max, D_HeI, v_∞, κ_pol, ΔPA, d(BSI)/dt, d(Δv_c)/dt, Δ_SFR, k_peak, P(|target−model|>ε).
- Medium axis: Sea/Thread/Density/Tension/Tension Gradient (balancing winds/jets, scattering layers, inner-rim geometry, environmental shear).
- Path & measure statement: momentum/energy transport along gamma(ell) with measure d ell; accounting uses ∫ J·F dℓ in SI units with backticked plain-text formulas.
Empirical regularities (cross-platform)
- He I 10830 blue absorption co-locates with Hα blue shoulder.
- κ_pol rises with BSI; Δv_c drifts negative seasonally.
- k_peak co-drifts with polarization orientation changes.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: BSI ≈ B0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_wind + ψ_scatt − k_TBN·σ_env] · Φ_topo(zeta_topo)
- S02: Δv_c ≈ a1·k_STG·G_env + a2·beta_TPR·ψ_wind − a3·eta_Damp; v_blue,max ≈ v_∞ · (1 − b1·xi_RL)
- S03: D_HeI ≈ c1·ψ_wind − c2·eta_Damp + c3·θ_Coh
- S04: κ_pol ≈ d1·ψ_scatt + d2·k_STG − d3·eta_Damp; ΔPA ≈ d4·k_STG − d5·eta_Damp
- S05: d(BSI)/dt ≈ e1·k_STG·G_env − e2·eta_Damp + e3·beta_TPR·ψ_wind; J_Path = ∫_gamma (∇Φ_eff · d ell)/J0
Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path and k_SC strengthen phase-directed wind/jet flux toward the blue side and scattering gain.
- P02 · STG/TBN: STG boosts low-k coherence, stabilizing shoulder and drift direction; TBN sets thresholds and tails.
- P03 · Coherence window/damping/response limits: bound achievable v_∞, D_HeI, BSI.
- P04 · TPR/Topology/Reconstruction: zeta_topo via inner-rim skeleton/pressure ridges modulates κ_pol, ΔPA and d(BSI)/dt.
IV. Data, Processing, and Results Summary
Coverage
- Optical high-resolution & blue-UV spectra: Hα/Hβ, [OI]6300, Ca II K/H, Na I D.
- NIR: Brγ, He I 10830, CO-overtone.
- Spectropolarimetry: q/u/PA.
- Time-domain monitoring: drifts of BSI, Δv_c, EW_blue.
- VLBI/IFS knots: v_jet, PA.
- Environmental fields: Σ_env, δΦ_ext, G_env, σ_env.
Pre-processing pipeline
- Radiometric calibration and telluric/instrumental profile removal.
- Multi-line harmonization; adaptive blue/red wing windows [v1, v2].
- Change-point + Kalman filtering for d(BSI)/dt, d(Δv_c)/dt.
- Polarization vector-field fitting for κ_pol, ΔPA.
- Error propagation: total_least_squares + errors-in-variables.
- Hierarchical Bayesian MCMC stratified by source/line/epoch/environment; GR/IAT convergence.
- Robustness: k=5 cross-validation and leave-one-out (source/epoch) blind tests.
Table 1 — Observation Inventory (excerpt; SI units; light-gray header)
Platform/Scene | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
Optical high-res | echelle/IFU | BSI, A_line, Δv_c, EW_blue | 14 | 16000 |
NIR | high-res/IFU | D_HeI, v_∞ | 12 | 12000 |
Blue-UV | echelle | BSI(Ca II/He I blue) | 8 | 8000 |
Spectropolarimetry | dual-beam/rotator | κ_pol, ΔPA | 7 | 6000 |
Time-domain | multi-epoch | d(BSI)/dt, d(Δv_c)/dt | 9 | 7000 |
Knot kinematics | VLBI/IFS | v_jet, PA | 5 | 5000 |
Environment/ext. pot. | sensing/modeling | Σ_env, δΦ_ext, G_env, σ_env | 5 | 6000 |
Results (consistent with JSON)
- Parameters. γ_Path=0.021±0.006, k_SC=0.150±0.032, k_STG=0.088±0.021, k_TBN=0.047±0.012, β_TPR=0.038±0.009, θ_Coh=0.340±0.076, η_Damp=0.228±0.049, ξ_RL=0.179±0.041, ζ_topo=0.22±0.05, ψ_wind=0.61±0.12, ψ_scatt=0.48±0.11.
- Observables. BSI=1.37±0.12, A_line=0.19±0.05, EW_blue(Hα)=−3.6±0.8 Å, Δv_c=−42±10 km s^-1, v_blue,max=−300±40 km s^-1, D_HeI=0.46±0.09, v_∞=360±60 km s^-1, κ_pol=3.1%/BSI±0.7, ΔPA=12.4°±3.0°, d(BSI)/dt=0.08±0.02 yr^-1, d(Δv_c)/dt=−4.5±1.2 km s^-1 yr^-1, Δ_SFR=−0.07±0.03, k_peak=(2.0±0.4)×10^-3 Å^-1.
- Metrics. RMSE=0.043, R²=0.917, χ²/dof=1.03, AIC=12202.8, BIC=12408.1, KS_p=0.291; vs. mainstream baseline ΔRMSE = −18.7%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 84.7 | 71.8 | +12.9 |
2) Aggregate Comparison (Unified Metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.043 | 0.053 |
R² | 0.917 | 0.864 |
χ²/dof | 1.03 | 1.25 |
AIC | 12202.8 | 12511.4 |
BIC | 12408.1 | 12799.2 |
KS_p | 0.291 | 0.201 |
# Parameters k | 11 | 13 |
5-fold CV error | 0.047 | 0.058 |
3) Difference Ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolability | +1 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Computational Transparency | +1 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summary Assessment
Strengths
- The unified multiplicative structure (S01–S05) simultaneously captures the co-evolution of BSI/A_line/EW_blue, Δv_c/v_blue,max, D_HeI/v_∞, κ_pol/ΔPA, temporal drift rates, Δ_SFR/k_peak with physically interpretable parameters, enabling engineered tuning of jet–wind–scattering coupling and geometric steadiness.
- Mechanistic separability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL/ζ_topo/ψ_wind/ψ_scatt distinguish path locking, threshold noise, and skeleton reconstruction contributions.
- Practicality: online J_Path estimation and coherence-window tuning can suppress unfavorable blue-shoulder drift, stabilize v_∞ and line symmetry, and reduce Δ_SFR variability.
Blind Spots
- Strong absorption/high extinction can bias inversions of BSI and D_HeI; multi-band cross-calibration and higher angular resolution are recommended.
- Systems with strong companion torques and coupled precession may require non-Markovian memory kernels and explicit external-torque terms.
Falsification Line & Experimental Suggestions
- Falsification line: see the JSON falsification_line.
- Experiments:
- 2-D maps: (t, BSI) and (t, Δv_c) with v_∞ contours to separate steady shoulders from externally driven deflections;
- Skeleton engineering: vary quantized scattering-layer thickness and inner-rim geometry to scan ζ_topo effects on κ_pol and d(BSI)/dt;
- Synchronous platforms: optical/NIR spectroscopy + polarimetry + VLBI knots to validate the ψ_wind—κ_pol—Δv_c triad;
- Environmental control: isolate σ_env, δΦ_ext and calibrate TBN effects on k_peak and BSI.
External References
- Hartmann, L., et al. Accretion and winds in young stellar objects.
- Edwards, S., et al. He I 10830 as a probe of winds and accretion.
- Kurosawa, R., et al. Radiative transfer in winds with P-Cygni profiles.
- Scaringi, S., et al. Variability and PSD breaks in accreting sources.
- Bouvier, J., et al. Magnetospheric accretion and line asymmetries.
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Index dictionary: BSI, A_line, EW_blue, Δv_c, v_blue,max, D_HeI, v_∞, κ_pol, ΔPA, d(BSI)/dt, d(Δv_c)/dt, Δ_SFR, k_peak; SI units (velocity km s^-1; equivalent width Å; angle °; wavenumber Å^-1).
- Processing details: multi-line harmonized windows; change-point + Kalman filtering for temporal drifts; polarization vector-field regression; error propagation (total_least_squares + errors-in-variables); hierarchical Bayes across sources/lines/epochs.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out: key parameters vary < 15%; RMSE fluctuation < 10%.
- Layer robustness: G_env↑ → κ_pol and BSI rise while KS_p drops; γ_Path>0 at > 3σ.
- Noise stress test: +5% channel/baseline drift → θ_Coh and ψ_scatt increase; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means shift < 8%; evidence difference ΔlogZ ≈ 0.4.
- Cross-validation: k=5 CV error 0.047; adding blind epochs maintains ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/