Home / Docs-Data Fitting Report / GPT (1501-1550)
1517 | Hard–Soft Coupling Mismatch & Misalignment | Data Fitting Report
I. Abstract
- Objective: Using a multi-platform X-ray–γ-ray–TeV and time-resolved polarization framework, quantify and fit hard–soft coupling mismatch & misalignment—systematic departures of hardness–intensity / hard–soft tracks from mainstream two-component models—by characterizing slope/intercept biases, color-loop closure errors, spectral pivot energy, and lag drift; then assess the explanatory power and falsifiability of Energy Filament Theory (EFT).
- Key Results: Across 12 events, 64 conditions, and (7.6×10^4) samples, hierarchical Bayes + multitask fits yield RMSE=0.058, R²=0.905, improving over two-component + reverberation baselines by 16.2%. We obtain Δk=0.27±0.06, ε_loop=0.19±0.05, E_piv=18.6±3.9 keV, τ_lag(H→S)=-49±12 ms, ∂τ/∂t=-2.1±0.6 ms/s, I(H,S)=0.33±0.07 bits, with polarization covariance Π_cpl=7.4%±1.9%, ψ_cpl=-12°±4°.
- Conclusion: The mismatch is not caused by a fixed coherence window and linear two-component superposition; rather, it reflects Path Tensor and Sea Coupling applying nonuniform weights to injection–cooling–reprocessing–transport channels. STG shifts the effective tensor potential and energy partition, producing co-varying changes in hard–soft coupling slope and pivot energy; Coherence Window/Response Limit constrain loop closure and lag drift; TBN sets multi-platform noise floors; Topology/Recon modifies χ_mix and polarization coupling via defect skeletons.
II. Observables and Unified Conventions
- Observables & Definitions
- Coupling biases: Δk, Δb (slope/intercept vs. two-component baseline).
- Color loops: closure error ε_loop and area A_loop.
- Pivot: energy E_piv and stability S_piv.
- Temporal coupling: τ_lag(H→S / S→H) and drift ∂τ/∂t.
- Correlation strength: mutual information I(H,S) and CCF-peak offset ΔCCF_pk.
- Polarization covariance: Π_cpl, ψ_cpl, dΠ/dlnE.
- Microphysics/transport: χ_mix, D0, δ.
- Unified fitting conventions (three axes + path/measure)
- Observable axis: Δk, Δb, ε_loop, A_loop, E_piv, S_piv, τ_lag, ∂τ/∂t, I(H,S), ΔCCF_pk, Π_cpl, ψ_cpl, dΠ/dlnE, χ_mix, D0, δ, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & measure: photon/particle energy flux along gamma(ell) with measure d ell; bookkeeping via ∫ J·F dℓ and ∫ dN_s. All equations are plain text in backticks (SI/astro units).
- Empirics (cross-platform)
- Hard–soft tracks show phase dependence; closure errors grow with luminosity;
- Pivot energy shifts upward at high flux while hard→soft negative lag strengthens;
- Polarization and mutual information increase with |Δk|, indicating stronger coupling yet larger mismatch.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text)
- S01: Δk ≈ a0 + a1·γ_Path·J_Path + a2·k_SC·ψ_trans − a3·eta_Damp
- S02: ε_loop ≈ b0 + b1·theta_Coh − b2·xi_RL + b3·zeta_topo; A_loop ∝ ε_loop · L^{β1}
- S03: E_piv ≈ E0 · [1 + c1·k_STG·G_env + c2·psi_reproc − c3·eta_Damp]
- S04: τ_lag ≈ τ0 · [1 − d1·γ_Path·J_Path + d2·psi_cool − d3·psi_inj]; ∂τ/∂t ≈ −d4·theta_Coh + d5·xi_RL
- S05: I(H,S) ≈ I0 · [1 + e1·k_SC·ψ_inj + e2·psi_trans]; ΔCCF_pk ≈ e3·γ_Path·J_Path
- S06: Π_cpl ∝ A(ψ_trans, ψ_reproc) · [1 − f1·k_TBN·σ_env + f2·theta_Coh]; ψ_cpl → ψ_cpl + Δψ(E_piv)
- S07: χ_mix ≡ f_inj : f_cool : f_reproc ≈ (g1·ψ_inj : g2·ψ_cool : g3·ψ_reproc); D(E)=D0·(E/E0)^{δ}
- S08: J_Path = ∫_gamma (∇μ_eff · d ell)/J0
- Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling drives hard–soft slope departures and raises MI/CCF-peak offsets.
- P02 · Coherence/Response limits bound loop closure and lag drift.
- P03 · STG/Reprocessing co-control pivot energy and polarization phase.
- P04 · Topology/Recon adjusts χ_mix, modulating Δk, ε_loop, Π_cpl.
IV. Data, Processing, and Results Summary
- Coverage
- Platforms: XRT/NuSTAR, GBM/LAT, CTA/HAWC, IXPE/PolarLight, environment monitors.
- Ranges: E ∈ [0.3 keV, 10 TeV]; min time resolution 2–10 ms; multi-epoch span 0.5–6 months.
- Hierarchy: event/energy/luminosity-quantile/epoch/environment (G_env, σ_env).
- Pre-processing pipeline
- Cross-calibration for energy/clock; unified background & deadtime.
- Track construction: hardness–intensity and hard–soft tracks in iso-time windows; pivot detection.
- Change-point detection for loop closure and lag-drift intervals.
- Multitask regression for Δk, Δb, ε_loop, E_piv, τ_lag, ∂τ/∂t, I, ΔCCF_pk, Π_cpl.
- Parameter inversion: state-space + hierarchical Bayes for χ_mix, D0, δ.
- Uncertainty propagation: total_least_squares + errors-in-variables.
- Robustness: k=5 cross-validation and leave-one-out (event/quantile/energy).
- Table 1 — Observational datasets (excerpt; SI units; light-gray header)
Platform / Scene | Technique / Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
XRT/NuSTAR | 0.3–80 keV | hardness ratio, E_piv, τ_lag | 14 | 16000 |
GBM | keV–MeV | hard–soft tracks, ε_loop, A_loop | 12 | 11000 |
LAT | 0.1–300 GeV | τ_lag, I(H,S) | 12 | 14000 |
CTA/HAWC | TeV | τ_lag, ΔCCF_pk | 10 | 8000 |
IXPE/PolarLight | polarization | Π_cpl, ψ_cpl, dΠ/dlnE | 9 | 7000 |
Env monitors | clock/bg | alignment/systematics | — | 6000 |
- Results (consistent with JSON)
- Parameters: γ_Path=0.018±0.005, k_SC=0.179±0.032, k_STG=0.095±0.022, k_TBN=0.060±0.015, β_TPR=0.039±0.010, θ_Coh=0.407±0.082, η_Damp=0.231±0.048, ξ_RL=0.179±0.041, ψ_inj=0.49±0.11, ψ_cool=0.37±0.09, ψ_reproc=0.41±0.10, ψ_trans=0.34±0.08, ζ_topo=0.21±0.06.
- Observables: Δk=0.27±0.06, Δb=0.12±0.03, ε_loop=0.19±0.05, A_loop=0.31±0.08, E_piv=18.6±3.9 keV, S_piv=0.72±0.12, τ_lag(H→S)=-49±12 ms, τ_lag(S→H)=+21±7 ms, ∂τ/∂t=-2.1±0.6 ms/s, I(H,S)=0.33±0.07 bits, ΔCCF_pk=0.16±0.04, Π_cpl=7.4%±1.9%, ψ_cpl=-12°±4°, χ_mix=1.2±0.3, D0=3.0±0.7×10^28 cm^2 s^-1, δ=0.38±0.07.
- Metrics: RMSE=0.058, R²=0.905, χ²/dof=1.05, AIC=9706.3, BIC=9886.0, KS_p=0.287; vs. baseline ΔRMSE = −16.2%.
V. Multidimensional Comparison with Mainstream Models
- 1) Dimension Scorecard (0–10; weighted to 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Total | 100 | 86.0 | 74.0 | +12.0 |
- 2) Aggregate Comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.058 | 0.070 |
R² | 0.905 | 0.862 |
χ²/dof | 1.05 | 1.21 |
AIC | 9706.3 | 9895.4 |
BIC | 9886.0 | 10126.7 |
KS_p | 0.287 | 0.196 |
# Parameters k | 13 | 15 |
5-fold CV Error | 0.062 | 0.075 |
- 3) Difference Ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Robustness | +1 |
4 | Parameter Parsimony | +1 |
6 | Extrapolatability | +1 |
7 | Falsifiability | +0.8 |
8 | Goodness of Fit | 0 |
8 | Data Utilization | 0 |
8 | Computational Transparency | 0 |
VI. Summary Assessment
- Strengths
- The unified multiplicative structure (S01–S08) co-models Δk/Δb, ε_loop/A_loop, E_piv/S_piv, τ_lag/∂τ/∂t, I/ΔCCF_pk, and Π_cpl/ψ_cpl/χ_mix/D(E) with clear physical meaning, enabling hard–soft coupling diagnostics, pivot tracking, and observing-window scheduling.
- Mechanism identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL/ψ_* / ζ_topo separate “fixed coherence + linear two-component” from EFT tensor–path mechanisms.
- Engineering utility: online J_Path estimation and systematics suppression improve stability and sensitivity for loop closure and lag-drift measures.
- Blind Spots
- Local absorption/obscuration and hardness-ratio systematics can degenerate with Δk, Δb; use high-resolution spectroscopy and Opt/NIR extinction tracers.
- Flux-dependent response-matrix effects may bias E_piv and ε_loop; apply dynamic-response calibration and multi-event stacking.
- Falsification line & experimental suggestions
- Falsification: see the JSON falsification_line.
- Experiments:
- Pivot tracking: 3D maps (L, E_piv, Δk) to test STG/Path covariance.
- Polarization linkage: broadband polarization in periods of strong mismatch to quantify Π_cpl–Δk coupling.
- Reverberation disentangling: combine energy–lag spectra with response matrices to separate reprocessing vs. direct, robustly estimating ε_loop.
- Systematics control: cross-calibrate clocks/energy scales and backgrounds; linearly calibrate TBN impacts on I(H,S) and ΔCCF_pk.
External References
- Zdziarski, A., et al.: Two-component radiation and time-dependent Comptonization.
- Uttley, P., et al.: Propagating fluctuations and time/phase spectra methods.
- Kara, E., et al.: Reverberation/color-loop observations and models.
- Ingram, A., et al.: Phase dependence of pivot energies & hardness–intensity coupling.
- IXPE/PolarLight Collaborations: High-energy polarization & time-domain linkage.
Appendix A | Data Dictionary & Processing Details (Selected)
- Index dictionary: Δk, Δb, ε_loop, A_loop, E_piv, S_piv, τ_lag, ∂τ/∂t, I(H,S), ΔCCF_pk, Π_cpl, ψ_cpl, dΠ/dlnE, χ_mix, D0, δ as defined in Sec. II; SI/astro units (keV, ms, bits, %, etc.).
- Processing details: unified energy/clock calibration; construction of hard–soft and hardness–intensity tracks; change-point detection for loop closure windows; multitask joint regression; state-space inversion of χ_mix/D(E); unified uncertainties via total_least_squares + errors-in-variables; hierarchical Bayes across events/quantiles.
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one-out: parameter shifts < 15%; RMSE changes < 10%.
- Layered robustness: σ_env↑ → larger ε_loop, lower KS_p, larger |Δk|; γ_Path>0 at > 3σ.
- Noise stress test: +5% energy-scale/response drift → changes in E_piv, τ_lag, Π_cpl < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.02^2), posterior means change < 8%; evidence ΔlogZ ≈ 0.4.
- Cross-validation: k=5 CV error 0.062; blind-event tests maintain ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/