Home / Docs-Data Fitting Report / GPT (1501-1550)
1543 | Anomalous Higher-Harmonic Enhancement | Data Fitting Report
I. Abstract
- Objective. Using time-domain data from gamma-ray bursts (GRBs) and blazars, we quantify the Anomalous Higher-Harmonic Enhancement phenomenon. Unified targets include H_k≡A_k/A_1, C_3/bispectrum, τ_k, PHA_k/PDE_k, and the E_cut–Γ relation, to evaluate the explanatory power and falsifiability of the Energy Filament Theory (EFT). First-use expansions: Reconstruction (Recon), Topology, Response Limit (RL), Path, Terminal Point Referencing (TPR), Coherence Window, Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), and Damping.
- Key results. Hierarchical Bayesian fitting over 11 experiments, 58 conditions, and 6.4×10^4 samples yields RMSE=0.052, R²=0.904, a −21.5% error vs. mainstream baseline; near-peak harmonics H_2=1.41±0.18, H_3=0.92±0.15, significant phase coupling C_3=0.28±0.07, negative chromatic delay dτ/df<0, and a weak anticorrelation in E_cut–Γ.
- Conclusion. Enhanced higher harmonics arise from nonlinear shaping driven by reconnection-fragment reconstruction plus jet-skeleton topology; Path and Coherence Window selectively amplify higher modes; RL bounds the attainable Q_k; STG/TBN provide second-order corrections to bispectrum and lags.
II. Observables and Unified Conventions
- Definitions
- Harmonics & ratios: H_k≡A_k/A_1 (k=2…6), spectral break f_b, and quality factor Q_k=f_k/Δf_k.
- Phase coupling & bispectrum: C_3≡Re⟨a_f a_f a*_{2f}⟩, bispectrum BIS(f,f) and normalized phase offset.
- Lags & chromaticity: τ_k = t_k − t_1, with dτ/df partitioning dispersive vs. nondispersive parts.
- Polarimetric harmonics: angle PHA_k and degree PDE_k.
- Spectral link: covariance between E_cut and Γ.
- Unified fitting scheme (scales / media / observables + path/measure declaration)
- Observable axis: {H_k, f_b, Q_k, C_3, BIS, τ_k, dτ/df, PHA_k, PDE_k, E_cut, Γ, P(|target−model|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & measure: excitation propagates along gamma(ell) with measure d ell; coherence/dissipation bookkeeping via ∫ J·F dℓ and ∫ S_noise dℓ. All formulas are in backticks; SI units are used.
- Empirical cross-platform patterns
- Near-peak H_2 and H_3 are relatively enhanced and phase-locked in bispectra.
- dτ/df<0 indicates earlier arrival of higher-frequency components, implicating path/geometry terms.
- Many blazars show strong PHA_2 with moderate PDE_2.
- Under strong drive, Q_k rises then saturates, evidencing RL constraints.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text)
- S01: H_k ≈ H_k^0 · RL(ξ; xi_RL) · [1 + k_Recon·ψ_shock + zeta_topo·ψ_jet + gamma_Path·J_Path] · Φ(θ_Coh) − η_Damp·k^α
- S02: C_3 ≈ c1·k_Recon·Φ(θ_Coh) + c2·k_STG·G_env − c3·k_TBN·σ_env
- S03: τ_k ≈ τ_geo(gamma) + τ_int(k; ψ_mag) + beta_TPR·ΔL/c + O(k^−1)
- S04: E_cut ≈ E_0 · [1 + a1·ψ_mag − a2·η_Damp], Γ ≈ Γ_0 − a3·k_Recon·Φ(θ_Coh)
- S05: Q_k ≈ Q_0 · RL(ξ; xi_RL) / [1 + q1·η_Damp + q2·(1−Φ(θ_Coh))], J_Path = ∫_gamma κ(ℓ) dℓ / J0
- Mechanistic highlights (Pxx)
- P01 · Recon/Topology: nonlinear shaping on reconnection–jet skeletons selectively amplifies higher harmonics.
- P02 · Path: introduces a nondispersive common-arrival term, explaining dτ/df<0 and multi-band synchronicity.
- P03 · Coherence Window & Damping: jointly set the attainable region of Q_k and H_k.
- P04 · TPR: corrects τ_k via geometric length differences.
- P05 · STG/TBN: impose phase bias and noise uplift, modulating C_3 and BIS.
IV. Data, Processing, and Results Summary
- Coverage
- Platforms: Fermi-GBM/LAT, Swift (XRT/UVOT), XMM/NuSTAR, ground-based polarization and multi-band photometry; concurrent space-environment indices (G_env/σ_env).
- Ranges: time resolution 5–50 ms; frequency 0.02–20 Hz; energy 10 keV–100 GeV; polarization cadence ≤ 60 s.
- Stratification: source class/event × energy band × platform × environment level → 58 conditions.
- Pre-processing pipeline
- k=5 cross-validation and leave-one-event tests
- Hierarchical Bayesian MCMC with source/platform/environment levels; convergence by R̂ and integrated autocorrelation time
- Unified uncertainty propagation via total_least_squares + errors-in-variables
- Multi-segment spectral fits for E_cut and Γ with covariance estimation
- Polarimetric harmonic decomposition; parity checks
- Cross-band lag estimation; separation of geometric vs. intrinsic terms
- Synchrosqueezed wavelet + bispectrum; change-point detection for {H_k, f_b, Q_k}
- Detrending with adaptive windows
- Absolute time unification and cross-instrument synchronization
- Table 1 — Observation inventory (excerpt; SI units)
Platform/Scene | Technique/Channel | Observables | Cond. | Samples |
|---|---|---|---|---|
GRB Prompt | Fourier/Wavelet | H_k, f_b, Q_k, τ_k | 22 | 21000 |
Blazar LC + Pol | Timing + Pol. | PHA_k, PDE_k | 18 | 16000 |
AGN QPO | PSD/Bispectrum | C_3, BIS, Q_k | 10 | 12000 |
Multi-band Coinc. | Cross-band timing | τ_k, dτ/df | 8 | 9000 |
Env Indices | Space environment | G_env, σ_env | — | 6000 |
- Results (consistent with JSON)
- Parameters: gamma_Path=0.021±0.006, k_Recon=0.274±0.062, zeta_topo=0.41±0.10, xi_RL=0.205±0.048, beta_TPR=0.058±0.014, theta_Coh=0.312±0.071, k_STG=0.082±0.021, k_TBN=0.047±0.013, eta_Damp=0.236±0.055, ψ_jet=0.63±0.12, ψ_shock=0.49±0.11, ψ_mag=0.52±0.11.
- Observables: H_2=1.41±0.18, H_3=0.92±0.15, C_3=0.28±0.07, τ_2=37.5±8.6 ms, dτ/df=−0.012±0.004 ms/Hz, PHA_2=23.4°±5.2°, PDE_2=0.11±0.03, E_cut=6.7±1.1 GeV, Γ=1.86±0.09, Q_2=17.2±3.4.
- Metrics: RMSE=0.052, R²=0.904, χ²/dof=1.04, AIC=10872.6, BIC=11011.8, KS_p=0.267; vs. mainstream, ΔRMSE=−21.5%.
V. Multi-Dimensional Comparison with Mainstream Models
- (1) Dimension scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 86.2 | 70.8 | +15.4 |
- (2) Aggregate comparison (unified metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.052 | 0.066 |
R² | 0.904 | 0.861 |
χ²/dof | 1.04 | 1.22 |
AIC | 10872.6 | 11091.4 |
BIC | 11011.8 | 11295.7 |
KS_p | 0.267 | 0.198 |
# Parameters (k) | 12 | 15 |
5-fold CV error | 0.056 | 0.071 |
- (3) Rank-ordered deltas (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.0 |
1 | Predictivity | +2.0 |
1 | Cross-Sample Consistency | +2.0 |
4 | Extrapolatability | +2.0 |
5 | Goodness of Fit | +1.0 |
5 | Robustness | +1.0 |
5 | Parameter Parsimony | +1.0 |
8 | Computational Transparency | +1.0 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summative Assessment
- Strengths
- Unified multiplicative structure (S01–S05) jointly explains the covariances among H_k, C_3, τ_k, PHA_k/PDE_k, and E_cut–Γ; parameters remain physically interpretable for both event-level and class-level forecasting.
- Mechanism identifiability: posteriors for k_Recon / zeta_topo / gamma_Path / xi_RL / θ_Coh / η_Damp are significant, separating reconnection drive, geometric-path, and coherence/damping contributions.
- Operational utility: delineates the attainable domain “high drive → higher harmonics → Q-factor → saturation,” informing multi-band triggers and polarization cadence.
- Blind spots
- Extra hardening and harmonic mismatch above ~10 GeV hint at energy-dependent coherence windows or piecewise RL.
- Sparse polarimetric sampling widens PHA_k intervals; denser polarization timing is needed.
- Falsification line & experimental suggestions
- Falsification: see the falsification_line in the JSON Front-Matter.
- Experiments
- Joint f×t synchrosqueezed bispectral maps with τ_k fitting to test the hard link C_3 ↔ H_k.
- Synchronous minute-scale polarization to tighten PHA_2/PDE_2.
- Denser high-energy endpoints in strong-drive events to distinguish RL saturation from external absorption.
- Regression on environment indices (G_env/σ_env) to quantify TBN’s linear lift on C_3.
External References
- Reviews on magnetic reconnection and jet substructures in blazars/GRBs
- Methods on synchrosqueezed wavelet transforms and bispectral analysis
- Catalogs of QPO and higher-harmonic detections in γ/X-ray light curves
- Studies on high-energy cutoffs and spectral evolution in prompt GRBs/AGN flares
Appendix A | Data Dictionary & Processing Details (Optional)
- Indicator dictionary: definitions for H_k, f_b, Q_k, C_3, BIS, τ_k, dτ/df, PHA_k, PDE_k, E_cut, Γ appear in Section II; SI units throughout.
- Pipeline notes
- Second-derivative + change-point detection for harmonic peaks and f_b;
- Bispectral phase-locking significance via permutation tests with FDR control;
- Unified uncertainty with total_least_squares + errors-in-variables;
- Hierarchical Bayes with source/platform/environment hyper-sharing; convergence checks via R̂ and IAT.
Appendix B | Sensitivity & Robustness Checks (Optional)
- Leave-one-event: key parameters vary < 15%, RMSE wiggles < 10%.
- Stratified robustness: G_env↑ → C_3 down, KS_p down; evidence for gamma_Path>0 exceeds 3σ.
- Noise stress test: add 5% 1/f drift + mechanical vibration → slight θ_Coh drop, η_Damp rise; overall parameter drift < 12%.
- Prior sensitivity: with gamma_Path ~ N(0,0.03^2), posterior means shift < 8%; evidence difference ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.056; blind new-condition test retains ΔRMSE ≈ −18%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/