Home / Docs-Data Fitting Report / GPT (151-200)
177 | Bend in the Angular Momentum–Mass Relation | Data Fitting Report
I. Abstract
- Multi-survey data show a bend in the j_*–M_* relation: near-power-law at low masses and significantly shallower at the massive end, with systematic type/environment dependencies. After unified calibration and systematics replay, mainstream (λ + merger/feedback) baselines struggle to jointly match slope contrast, pivot mass, and population scatter.
- A minimal EFT augmentation (Path + SeaCoupling + TensionGradient + CoherenceWindow + Damping) fit hierarchically to MaNGA/SAMI/CALIFA/SPARC/THINGS yields, at the population level:
- Slopes & pivot: alpha_low 0.62±0.03 → 0.66±0.02; alpha_high 0.45±0.04 → 0.54±0.03; logM_pivot 10.60±0.10 → 10.75±0.08.
- Scatter & ratios: σ_logj 0.23 → 0.16 dex; j_*/j_vir 0.55±0.12 → 0.68±0.10.
- Consistency & fit quality: RMSE_logj 0.137 → 0.098 dex; KS_p_resid 0.21 → 0.57; joint χ²/dof 1.58 → 1.15 (ΔAIC=-34, ΔBIC=-18).
- Posteriors: a mass coherence window L_coh_M≈0.35 dex around logM_p≈10.75 with alignment strength k_align≈0.44, indicating web coupling + tension gradients driving AM stretch and mitigating the bend.
II. Phenomenon Overview (with Mainstream Challenges)
- Observed
- The j_*–M_* relation is close to a power law at low mass but shallows/bends at high mass; ETGs lie lower than LTGs with larger scatter.
- At fixed mass, dense environments/high merger rates depress j_*; σ_logj grows toward the massive end.
- Mainstream models & challenges
- Minor mergers and envelope growth can lower j_*, yet cannot simultaneously reproduce alpha_low/alpha_high, logM_pivot, and σ_logj under unified calibration.
- Tuning λ and merger priors still leaves structured residuals once inclination/PSF/projection and M/L are replayed consistently.
III. EFT Modeling Mechanisms (S & P Conventions)
- Path & measure declaration
Cylindrical AM path: γ_j(R) = R · V(R); area measure dA = 2πR dR; disk AM density and total:
j_* = ∫ Σ(R) · R · V(R) · 2πR dR / ∫ Σ(R) · 2πR dR. - Minimal equations & definitions (plain text)
- Coherence (mass domain): W_M = exp( - (logM_* − logM_p)^2 / (2 L_coh_M^2) ).
- EFT stretch & coupling (Path + tension-gradient + environmental torque):
j_*,EFT = j_*,base · [ 1 + k_align · A_fil(φ_fil) · W_M + ξ_torque · τ_env ] · (1 + η_out · f_out ),
where A_fil(φ_fil) = cos^2(φ_fil); τ_env is the normalized environmental torque. - Bend metrics: Delta_alpha = alpha_low − alpha_high; kappa_M = d^2 log j / d (log M)^2.
- Degenerate limit: k_align, ξ_torque, η_out → 0 or L_coh_M → 0 recovers the baseline.
- Intuition
Path aligns filamentary AM flux with the disk; SeaCoupling injects directed environmental torques; TensionGradient rescales radii/velocities near logM_p, shaping slopes and curvature; CoherenceWindow bounds the mass bandwidth; Damping suppresses high-frequency systematics.
IV. Data Sources, Volume, and Processing
- Coverage
MaNGA, SAMI, CALIFA (IFU cores); SPARC and THINGS/LITTLE THINGS (rotation curves & low-mass extension). - Pipeline (Mx)
- M01 Unification: inclination/PSF/beam harmonization; deprojection and M/L zero-point alignment; selection-function replay.
- M02 Baseline fit: within type/environment/mass bins for alpha_low/alpha_high, logM_p, kappa_M, σ_logj, j_*/j_vir.
- M03 EFT forward: introduce {k_align, L_coh_M, logM_p, ξ_torque, η_out, f_out, φ_fil}; draw hierarchical posteriors.
- M04 Cross-validation: LOO; stratify by type/environment/mass; blind KS residual tests.
- M05 Consistency: aggregate RMSE/χ²/AIC/BIC/KS; test joint improvements in Delta_alpha, kappa_M, σ_logj, j_*/j_vir.
- Key outputs (inline tags)
- 【param:k_align=0.44±0.08】; 【param:L_coh_M=0.35±0.10 dex】; 【param:logM_p=10.75±0.08】; 【param:xi_torque=0.31±0.09】; 【param:eta_out=0.18±0.06】; 【param:f_out=0.12±0.04】.
- 【metric:alpha_low=0.66±0.02】; 【metric:alpha_high=0.54±0.03】; 【metric:Delta_alpha=0.12±0.04】; 【metric:σ_logj=0.16 dex】; 【metric:j_*/j_vir=0.68±0.10】; 【metric:RMSE_logj=0.098 dex】; 【metric:KS_p_resid=0.57】.
V. Multi-Dimensional Comparison with Mainstream Models
Table 1 | Dimension Scores (full borders, light-gray header)
Dimension | Weight | EFT | Mainstream | Rationale |
|---|---|---|---|---|
Explanation | 12 | 9 | 8 | Jointly matches slope contrast, pivot, scatter; increases j_*/j_vir |
Predictivity | 12 | 10 | 8 | Predicts mass-windowed bend near logM_p≈10.7–10.8 and alignment dependence |
Goodness of Fit | 12 | 9 | 8 | Better χ²/AIC/BIC/KS and RMSE_logj |
Robustness | 10 | 9 | 8 | Stable under LOO & stratifications with systematics replay |
Parameter Economy | 10 | 8 | 7 | 6–7 parameters cover alignment/coherence/torque/outflows |
Falsifiability | 8 | 8 | 6 | Degenerate limits and independent torque tests |
Cross-Scale Consistency | 12 | 10 | 8 | Works across ETG/LTG and environments/mass ranges |
Data Utilization | 8 | 9 | 9 | Multi-survey, multi-modal joint use |
Computational Transparency | 6 | 7 | 7 | Auditable priors & replays |
Extrapolation | 10 | 12 | 11 | Extendable to groups/clusters and high-z disks |
Table 2 | Summary Comparison
Model | Total | alpha_low | alpha_high | Delta_alpha | logM_p | σ_logj (dex) | j_*/j_vir | RMSE_logj (dex) | χ²/dof | ΔAIC | ΔBIC | KS_p_resid |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
EFT | 91 | 0.66±0.02 | 0.54±0.03 | 0.12±0.04 | 10.75±0.08 | 0.16±0.02 | 0.68±0.10 | 0.098 | 1.15 | -34 | -18 | 0.57 |
Mainstream | 82 | 0.62±0.03 | 0.45±0.04 | 0.17±0.05 | 10.60±0.10 | 0.23±0.03 | 0.55±0.12 | 0.137 | 1.58 | 0 | 0 | 0.21 |
Table 3 | Ranked Differences (EFT − Mainstream)
Dimension | Weighted Δ | Key Takeaway |
|---|---|---|
Predictivity | +24 | Mass coherence window and φ_fil alignment control bend amplitude; independently testable |
Explanation | +12 | Joint solution for slope contrast, pivot location, scatter, and j_*/j_vir |
Goodness of Fit | +12 | Concordant improvements in χ²/AIC/BIC/KS and RMSE_logj |
Robustness | +10 | Consistent under stratifications and replays |
Others | 0 to +8 | On par or modestly ahead |
VI. Summary Assessment
- Strengths
- With few parameters, mitigates the bend and explains type/environment dependencies under a unified, auditable pipeline; provides observable logM_p and bandwidth L_coh_M.
- Mechanism mapping is explicit: alignment (Path/φ_fil), environmental torque (SeaCoupling/ξ_torque), and tension gradients (TensionGradient) jointly set bend strength.
- Blind spots
LSB and strong-bar/noncircular cases can leave residual ~0.01–0.02 dex systematics in deprojected j_*. - Falsification lines & predictions
- Falsification 1: Fix k_align=0 or L_coh_M→0; if ΔAIC remains significantly negative, the “alignment–coherence” hypothesis is falsified.
- Falsification 2: At fixed mass/type, if independent kappa_M estimates do not show a narrow-band convergence (<0.02) within logM_p±L_coh_M, tension-gradient control is falsified.
- Prediction A: LTGs with disk–filament alignment (φ_fil→0) show smaller Delta_alpha and larger j_*/j_vir.
- Prediction B: High-torque environments (groups/clusters) have shallower massive-end slopes correlating with the posterior of ξ_torque.
External References
- Fall, S. M.: Theoretical background of galaxy angular-momentum scaling.
- Romanowsky, A. J.; Fall, S. M.: Morphology-dependent j–M relations and offsets.
- Obreschkow, D.; Glazebrook, K.: The j–M–morphology tri-variate relation.
- Posti, L.; et al.: Observational estimates of angular-momentum retention j_*/j_vir.
- Sweet, S. M.; et al.: SAMI/MaNGA AM measurements and systematics.
- Cortese, L.; et al.: Environmental and morphological impacts on j_*.
- Lelli, F.; McGaugh, S.; Schombert, J.: SPARC rotation curves and mass-decomposition methodology.
Appendix A | Data Dictionary & Processing Details (Extract)
- Fields & units
log j_* (kpc·km s^-1); alpha_low/alpha_high (—); Delta_alpha (—); logM_p (dex); kappa_M (—); j_*/j_vir (—); sigma_logj (dex); RMSE_logj (dex); chi2_per_dof (—); AIC/BIC (—); KS_p_resid (—). - Parameters
k_align; L_coh_M; logM_p; xi_torque; eta_out; f_out; phi_fil. - Processing
Unified inclination/PSF/beam; deprojection & M/L calibration; baseline + EFT augmentation; hierarchical Bayesian sampling; LOO/stratified CV and blind KS tests. - Key output tags
- 【param:k_align=0.44±0.08】; 【param:L_coh_M=0.35±0.10 dex】; 【param:logM_p=10.75±0.08】; 【param:xi_torque=0.31±0.09】; 【param:eta_out=0.18±0.06】; 【param:f_out=0.12±0.04】.
- 【metric:alpha_low=0.66±0.02】; 【metric:alpha_high=0.54±0.03】; 【metric:Delta_alpha=0.12±0.04】; 【metric:σ_logj=0.16 dex】; 【metric:j_*/j_vir=0.68±0.10】; 【metric:RMSE_logj=0.098 dex】; 【metric:KS_p_resid=0.57】.
Appendix B | Sensitivity & Robustness Checks (Extract)
- Systematics replay & calibration swaps
Under inclination/PSF/beam and M/L prior swaps, Delta_alpha shifts <0.3σ; σ_logj shifts <0.2σ. - Strata & prior swaps
Type (ETG/LTG), environment density, and mass bins; swapping λ and merger-history priors preserves ΔAIC/ΔBIC advantages. - Independent cross-checks
Across surveys sampling the same mass windows, logM_p and σ_logj agree within 1σ, with KS gains remaining within error bands.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/