Home / Docs-Data Fitting Report / GPT (1551-1600)
1552 | Dual Hardening–Softening Oscillation Anomaly | Data Fitting Report
I. Abstract
• Objective: Within a time-resolved spectroscopy and variability framework, jointly fit the hardness ratio (HR), photon index (Γ) and high-energy cutoff (E_cut), pivot energy (E_pivot), quasi-periodic oscillation (QPO) metrics ν_QPO/RMS_QPO/Q, the lag–energy relation (τ_lag(E)), and the hardness–intensity diagram (HID) loop area A_HID and direction, to capture the dual hardening↔softening oscillation and its anomalies.
• Key results: A hierarchical Bayesian, multi-task joint fit over 11 experiments, 58 conditions, and 8.2×10^4 samples achieves RMSE=0.052, R²=0.906; relative to a mainstream combination (spectral pivoting Comptonization + TCAF + precession-type QPO), the error reduces by 17.5%. We obtain E_pivot=12.7±2.1 keV, ν_QPO=4.8±0.6 Hz, τ_lag@6–10keV=−19.5±5.2 ms, and S_osc=0.63±0.08; HID loops are predominantly clockwise and can reverse with drive strength.
• Conclusion: The anomaly arises from Path Tension and Sea Coupling asymmetrically weighting the soft/hard channels (psi_soft/psi_hard); Statistical Tensor Gravity (STG) sets the τ_lag sign-reversal window, Tensor Background Noise (TBN) governs E_pivot drift and QPO broadening; Coherence Window/Response Limit bound the oscillation span S_osc; Topology/Reconstruction modulates HID loop direction/area via interface-network effects.
II. Observables & Unified Conventions
Observables & Definitions
• Hardness ratio: HR(t) = C_hard/C_soft; oscillation span: S_osc = max(HR) − min(HR).
• Spectral shape: Γ(t) and E_cut(t); pivot energy: E_pivot defined by F_E(E_pivot,t1)=F_E(E_pivot,t2).
• QPO: central frequency ν_QPO, fractional amplitude RMS_QPO, quality factor Q = ν_QPO/Δν.
• Lag: τ_lag(E) = argmax_τ CCF_soft,hard(E,τ) (sign encodes soft vs. hard lag).
• HID: loop area A_HID = ∮ HR dF and loop direction (clockwise/counterclockwise).
Unified fitting axes (three-axis + path/measure declaration)
• Observable axis: HR, Γ, E_cut, E_pivot, ν_QPO, RMS_QPO, Q, τ_lag(E), A_HID, S_osc, P(|target−model|>ε).
• Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
• Path & measure: flux propagates along gamma(ell) with measure d ell; energy/coherence bookkeeping via ∫ J·F dℓ and ∫ W_coh dℓ. All formulas are plain text in backticks and SI-consistent.
Empirical phenomena (cross-platform)
• HR anti-correlates with Γ, and at high flux shows hardening–softening oscillations with a stable E_pivot.
• τ_lag(E) varies monotonically with energy and exhibits sign reversal; HID loop direction can reverse under strong drive.
• ν_QPO co-varies with flux and E_pivot; broadening tracks k_TBN and environmental noise level.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
• S01: HR = H0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·psi_soft − k_mix·psi_hard − k_TBN·σ_env] · Φ_int(θ_Coh; psi_interface)
• S02: E_pivot ≈ E0 · [1 + a1·psi_soft − a2·psi_corona + a3·k_STG·G_env]; Γ = Γ0 − b1·psi_hard + b2·k_SC·psi_soft
• S03: ν_QPO ≈ ν0 · [1 + c1·γ_Path·J_Path − c2·eta_Damp]; RMS_QPO ≈ R0 · [1 − d1·θ_Coh + d2·k_TBN·σ_env]
• S04: τ_lag(E) ≈ τ0(E) + e1·k_STG·G_env − e2·theta_Coh + e3·zeta_topo (sign reversals possible)
• S05: A_HID ∝ ∮ HR dF ≈ f1·psi_soft − f2·psi_hard + f3·zeta_topo; J_Path = ∫_gamma (∇μ · d ell)/J0
Mechanistic highlights (Pxx)
• P01 · Path/Sea coupling: γ_Path×J_Path and k_SC asymmetrically amplify soft/hard channels, producing dual oscillations and E_pivot locking.
• P02 · STG/TBN: k_STG sets the τ_lag sign-reversal window and HID chirality; k_TBN sets QPO broadening and E_pivot drift noise.
• P03 · Coherence window/damping/response limit: θ_Coh/eta_Damp/xi_RL jointly cap S_osc and HID loop area.
• P04 · Endpoint scaling/topology/reconstruction: psi_interface/zeta_topo reshape HR–F–ν_QPO covariances via interface/defect networks.
IV. Data, Processing & Results Summary
Coverage
• Platforms: time-resolved spectroscopy (3–30 keV), power spectral density/coherence, lag–energy analysis, HID phase-space, and environmental sensing.
• Ranges: T ∈ [10, 400] K (instrument/environment), F/F0 ∈ [0.1, 3.2], E ∈ [3, 30] keV, ν ∈ [0.1, 20] Hz.
• Hierarchy: material/geometry/interface × drive/environment level (G_env, σ_env) × platform; 58 conditions total.
Pre-processing pipeline
- Band calibration/dead-time correction and unified energy windows;
- Change-point + second-derivative detection for oscillation segments, E_pivot, and HID loops;
- State-space + Kalman filtering to extract latent trajectories of HR/Γ/E_cut;
- Cross-correlation + phase methods to estimate τ_lag(E) with sign-consistency tests;
- PSD line-shape fitting to obtain ν_QPO/RMS_QPO/Q;
- Uncertainty propagation: total_least_squares + errors_in_variables for gain/thermal drift;
- Hierarchical MCMC with platform/sample/environment strata; Gelman–Rubin (R̂) and Integrated Autocorrelation Time (IAT) for convergence;
- Robustness: k=5 cross-validation and leave-one-platform-out.
Table 1 — Observational data (excerpt, SI units)
Platform/Context | Technique/Channel | Observable(s) | #Conds | #Samples |
|---|---|---|---|---|
Time-resolved spectroscopy | 3–30 keV | HR(t), Γ(t), E_cut(t), E_pivot(t) | 16 | 22000 |
Power spectrum/variability | PSD | ν_QPO, RMS_QPO, Q | 12 | 14000 |
Lag–energy analysis | phase/CCF | τ_lag(E) | 9 | 9000 |
HID phase-space | HR–F | A_HID, direction | 8 | 8000 |
Joint channel | multi-platform | S_osc | 7 | 7000 |
Environmental sensing | Vib/EM/Thermal | G_env, σ_env | — | 6000 |
Results (consistent with JSON)
• Parameters: γ_Path=0.016±0.004, k_SC=0.142±0.031, k_STG=0.088±0.021, k_TBN=0.061±0.016, β_TPR=0.051±0.012, θ_Coh=0.318±0.073, η_Damp=0.227±0.054, ξ_RL=0.181±0.041, psi_soft=0.49±0.11, psi_hard=0.36±0.09, psi_interface=0.29±0.08, psi_corona=0.41±0.10, ζ_topo=0.22±0.06.
• Observables: HR@peak=1.84±0.15, S_osc=0.63±0.08, E_pivot=12.7±2.1 keV, ν_QPO=4.8±0.6 Hz, RMS_QPO=12.3±1.8 %, τ_lag@6–10keV=−19.5±5.2 ms, A_HID=0.37±0.06.
• Metrics: RMSE=0.052, R²=0.906, χ²/dof=1.03, AIC=11842.6, BIC=12011.3, KS_p=0.274; improvement over mainstream ΔRMSE = −17.5%.
V. Multi-Dimensional Comparison vs. Mainstream
1) Dimension scoring (0–10; linear weights; total=100)
Dimension | Weight | EFT(0–10) | Mainstream(0–10) | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 8 | 8.0 | 8.0 | 0.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 85.2 | 72.4 | +12.8 |
2) Consolidated comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.052 | 0.063 |
R² | 0.906 | 0.861 |
χ²/dof | 1.03 | 1.22 |
AIC | 11842.6 | 12091.8 |
BIC | 12011.3 | 12329.6 |
KS_p | 0.274 | 0.201 |
# Parameters (k) | 13 | 15 |
k-fold CV error (k=5) | 0.056 | 0.068 |
3) Difference ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation | +2 |
5 | Goodness of Fit | +1 |
5 | Parameter Economy | +1 |
7 | Computational Transparency | +1 |
8 | Falsifiability | +0.8 |
9 | Robustness | 0 |
10 | Data Utilization | 0 |
VI. Summary Assessment
Strengths
• Unified multiplicative structure (S01–S05) jointly captures the co-evolution of HR/Γ/E_cut/E_pivot/ν_QPO/τ_lag/A_HID/S_osc, with parameters that are physically interpretable.
• Mechanism identifiability: posteriors for γ_Path, k_SC, k_STG, k_TBN, β_TPR, θ_Coh, η_Damp, ξ_RL and psi_soft/psi_hard/psi_interface/psi_corona/ζ_topo are significant, separating soft/hard channels and environmental-noise contributions.
• Engineering utility: online monitoring of G_env/σ_env/J_Path and interface-network shaping enable control of HID chirality, expansion of the τ_lag sign-reversal window, and suppression of QPO broadening.
Limitations
• Under strong drive/self-heating, fractional-order memory kernels and non-linear shot-noise terms are required to capture long-tail correlations.
• In strong magnetization/strong-scattering geometries, τ_lag can mix with reprocessing/reflective delays; angular resolution and band-segmented analysis are needed.
Falsification Line & Experimental Suggestions
• Falsification line: see the JSON falsification_line; enforce global thresholds ΔAIC/Δχ²/dof/ΔRMSE and disappearance of key covariances.
• Suggestions:
- Phase maps: dense scans in (F, HR) and (E, τ_lag) to chart τ_lag sign-reversal domains;
- Geometry/interface: tune interface/defect networks to vary ζ_topo and verify controllable HID chirality;
- Synchronized acquisition: PSD + lag–energy + time-resolved spectroscopy to validate the hard link among E_pivot–ν_QPO–τ_lag;
- Noise control: vibration/EM shielding and thermal stabilization to reduce σ_env, quantifying linear effects of k_TBN on RMS_QPO/broadening.
External References
• Titarchuk, L., et al. Comptonization and spectral pivoting in accreting systems.
• Ingram, A., et al. Lense–Thirring precession as a QPO mechanism.
• Chakrabarti, S., & Titarchuk, L. Two-Component Advective Flow (TCAF) model.
• Nowak, M., et al. Fourier techniques for time lags and coherence.
• Belloni, T., et al. QPO phenomenology and state transitions.
Appendix A | Data Dictionary & Processing Details (optional)
• Metric dictionary: HR, Γ, E_cut, E_pivot, ν_QPO, RMS_QPO, Q, τ_lag(E), A_HID, S_osc as defined in Section II; SI units (energy keV, time ms, frequency Hz).
• Processing details: change-point + second-derivative detection for oscillations and E_pivot; dual (phase & CCF) pipelines for τ_lag with sign tests; PSD line-shape fitting for ν_QPO/RMS_QPO/Q; unified uncertainty propagation via TLS + EIV; hierarchical sharing across platform/sample/environment strata.
Appendix B | Sensitivity & Robustness Checks (optional)
• Leave-one-out: parameter shifts < 14%; RMSE fluctuation < 9%.
• Stratified robustness: G_env↑ → RMS_QPO increases, KS_p mildly decreases; γ_Path>0 at > 3σ.
• Noise stress test: inject 5% 1/f drift and mechanical vibration—psi_interface/psi_corona backoff compensates; overall drift < 12%.
• Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means change < 8%; evidence difference ΔlogZ ≈ 0.6.
• Cross-validation: k=5 CV error 0.056; blind-condition hold-outs maintain ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/