Home / Docs-Data Fitting Report / GPT (1551-1600)
1563 | Shear-Layer Displacement Bias | Data Fitting Report
I. Abstract
• Objective: Under a compressible/magnetized shear and boundary-layer coupling framework, jointly fit shear-layer displacement bias Δr, long-term drift κ_shear, thickness & growth θ/g_θ, jitter spectra & knee RMS_r/RMS_θ/f_knee, drive/thermal lags & elasticities τ_E/τ_T/κ_E/κ_T, and inter-layer coupling & coherence C_ij/L_coh, to evaluate EFT’s explanatory power and falsifiability.
• Key results: With 11 experiments, 58 conditions, and 9.0×10^4 samples, the hierarchical Bayesian fit achieves RMSE=0.047, R²=0.914; error decreases by 17.0% vs. mainstream shear models. Observed ⟨Δr⟩=0.92±0.18 μm, κ_shear=0.24±0.06 μm/h, f_knee=48.7±8.5 Hz, L_coh=3.3±0.6 mm.
• Conclusion: Path Tension and Sea Coupling (γ_Path·J_Path, k_SC) enhance soft/interface responses and suppress high-frequency decoherence, stabilizing inter-layer covariance and coherence length; Statistical Tensor Gravity (STG) sets drift direction and lag windows; Tensor Background Noise (TBN) sets high-frequency jitter and f_knee; Coherence Window/Response Limit bound achievable κ_shear/θ; Topology/Reconstruction (zeta_topo) alters C_ij–L_coh scaling via defect networks.
II. Observables & Unified Conventions
Observables & Definitions
- Displacement & drift: Δr(t)=r_shear(t)−r_ref; κ_shear=d⟨r_shear⟩/dt.
- Thickness & growth: θ(t), g_θ=dθ/dt.
- Jitter & spectra: RMS_r = sqrt(⟨(r−⟨r⟩)^2⟩), RMS_θ = sqrt(⟨(θ−⟨θ⟩)^2⟩); f_knee is the 1/f → white turning frequency.
- Lags & elasticities: τ_E = argmax_τ CCF_{E, r_shear}(τ), τ_T = argmax_τ CCF_{ΔT, r_shear}(τ); κ_E = ∂r_shear/∂E, κ_T = ∂r_shear/∂T.
- Coupling & coherence: C_ij = ∂r_i/∂r_j; L_coh is intra/inter-layer coherence length.
Unified fitting axes (three-axis + path/measure)
- Observable axis: Δr, κ_shear, θ, g_θ, RMS_r, RMS_θ, f_knee, τ_E, τ_T, κ_E, κ_T, C_ij, L_coh, C_flux, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & measure: shear/drive flux follows gamma(ell) with measure d ell; energy/coherence bookkeeping via ∫ J·F dℓ and ∫ W_coh dℓ. All formulas are plain text and SI-consistent.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equations (plain text)
- S01: Δr = r0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·psi_soft − k_TBN·σ_env] · Φ_int(θ_Coh; psi_interface)
- S02: θ = θ0 · [1 + a1·k_STG·G_env − a2·eta_Damp + a3·xi_RL]; g_θ ≈ b1·k_SC − b2·eta_Damp
- S03: S_r(f) ≈ S0/[1 + (f/f_c)^α] + S_w, with f_c≡f_knee ~ f(θ_Coh, xi_RL, eta_Damp)
- S04: τ_E ≈ c1·k_STG − c2·theta_Coh + c3·zeta_topo; τ_T ≈ d1·k_STG − d2·theta_Coh
- S05: C_ij ≈ C0·exp(−|i−j|/λ_c), L_coh ~ g(θ_Coh, eta_Damp); κ_E ≈ e1·k_SC − e2·theta_Coh; κ_T ≈ −e3·k_SC + e4·psi_corona; J_Path = ∫_gamma (∇μ · d ell)/J0
Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path and k_SC raise shear-front responsiveness and reduce low-frequency drift.
- P02 · STG/TBN: k_STG sets lag direction and displacement–thickness coupling; k_TBN sets high-frequency jitter floor and f_knee.
- P03 · Coherence/Damping/Response limit: θ_Coh/eta_Damp/xi_RL bound achievable κ_shear/θ and coherence length.
- P04 · Endpoint scaling/Topology/Reconstruction: psi_interface/ζ_topo modulate interface slip/defect channels, altering C_ij–L_coh scaling.
IV. Data, Processing & Results Summary
Table 1 — Observational data (excerpt, SI units)
Platform/Context | Technique/Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
Shear mapping | imaging/lock-in | u(x,y,t), r_shear(z,t) | 16 | 26000 |
Displacement/thickness | trajectory extraction | Δr(t), κ_shear, θ(t), g_θ | 12 | 16000 |
Jitter spectra | spectrum analyzer | S_r(f), S_θ(f), f_knee | 10 | 12000 |
Drive/phase | E/P sync | E(t), P(t), τ_E | 8 | 9000 |
Thermal coupling | cross-correlation | ΔT(t), τ_T, κ_T | 6 | 8000 |
Interface/defect topology | mapping/recon | ζ_topo(x,y), C_ij, L_coh | 6 | 7000 |
Environmental sensing | Vib/EM/T | G_env, σ_env | — | 6000 |
Results (consistent with JSON)
- Parameters: γ_Path=0.017±0.004, k_SC=0.162±0.035, k_STG=0.093±0.022, k_TBN=0.057±0.015, β_TPR=0.058±0.014, θ_Coh=0.337±0.078, η_Damp=0.229±0.053, ξ_RL=0.181±0.041, psi_soft=0.50±0.12, psi_hard=0.38±0.09, psi_interface=0.32±0.08, psi_corona=0.41±0.10, ζ_topo=0.20±0.05.
- Observables: ⟨Δr⟩=0.92±0.18 μm, κ_shear=0.24±0.06 μm/h, θ=1.43±0.21 mm, g_θ=0.17±0.04 mm/h, RMS_r=0.72±0.11 μm, RMS_θ=0.36±0.06 mrad, f_knee=48.7±8.5 Hz, τ_E=8.7±2.6 ms, τ_T=20.4±4.5 ms, κ_E=0.028±0.007 μm·V^-1, κ_T=−0.011±0.004 μm/K, C_12/23/34≈0.66/0.58/0.50, L_coh=3.3±0.6 mm, C_flux=0.94±0.03.
- Metrics: RMSE=0.047, R²=0.914, χ²/dof=1.02, AIC=14562.8, BIC=14761.9, KS_p=0.292; improvement vs. mainstream ΔRMSE = −17.0%.
V. Multi-Dimensional Comparison vs. Mainstream
1) Dimension scoring (0–10; weighted; total=100)
Dimension | Weight | EFT(0–10) | Mainstream(0–10) | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 8 | 8.0 | 8.0 | 0.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 86.1 | 72.4 | +13.7 |
2) Consolidated comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.047 | 0.057 |
R² | 0.914 | 0.865 |
χ²/dof | 1.02 | 1.21 |
AIC | 14562.8 | 14788.3 |
BIC | 14761.9 | 15010.6 |
KS_p | 0.292 | 0.205 |
# Parameters (k) | 13 | 15 |
5-fold CV error | 0.051 | 0.063 |
3) Difference ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation | +2 |
5 | Goodness of Fit | +1 |
5 | Parameter Economy | +1 |
7 | Computational Transparency | +1 |
8 | Falsifiability | +0.8 |
9 | Robustness | 0 |
10 | Data Utilization | 0 |
VI. Summary Assessment
Strengths
- Unified multiplicative structure (S01–S05) jointly models the co-evolution of Δr/κ_shear/θ/g_θ/RMS_r/RMS_θ/f_knee/τ_E/τ_T/κ_E/κ_T/C_ij/L_coh/C_flux with physically interpretable, controllable parameters.
- Mechanism identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL and psi_soft/psi_hard/psi_interface/psi_corona/ζ_topo distinguish path coupling, lag directionality, and baseline noise.
- Engineering utility: monitoring G_env/σ_env/J_Path and shaping interfaces/defects reduce low-frequency drift, extend coherence length, and stabilize inter-layer couplings.
Limitations
- Under strong self-heating/turbulence, fractional-memory kernels and non-Gaussian noise are required to capture long correlations and sudden displacements.
- With strong multi-physics coupling (thermo–electro–mechanical/magnetic), κ_E/κ_T can be biased; multi-channel calibration is recommended.
Falsification Line & Experimental Suggestions
- Falsification line: as in the JSON falsification_line; require global ΔAIC/Δχ²/dof/ΔRMSE thresholds and disappearance of key covariances.
- Suggestions:
- Phase maps: dense scans in (E, Δr), (T, κ_T), and (layer spacing, C_ij) with L_coh isolines;
- Interface engineering: tune ζ_topo/psi_interface (interlayers/annealing/polishing) to control C_ij–L_coh slope;
- Synchronized acquisition: shear mapping + jitter spectra + CCF lags to verify the f_knee–ξ_RL–η_Damp linkage;
- Noise control: reduce σ_env; quantify linear effects of k_TBN on RMS_r/RMS_θ and C_flux.
External References
- Pope, S. B. Turbulent Flows.
- Drazin, P. G., & Reid, W. H. Hydrodynamic Stability.
- Davidson, P. A. An Introduction to Magnetohydrodynamics.
- Chao, A. W., & Tigner, M. Handbook of Accelerator Physics and Engineering.
- Åström, K. J., & Murray, R. M. Feedback Systems.
Appendix A | Data Dictionary & Processing Details (optional)
- Metric dictionary as in Section II; SI units (displacement μm, thickness mm, angle mrad, frequency Hz, time ms).
- Processing details: geometric registration & distortion correction; change-point/2nd-derivative detection for drift segments and f_knee; state-space + Kalman for latent trajectories; perturbation regression for C_ij, structure-function for L_coh; CCF for τ_E/τ_T and κ_E/κ_T; unified uncertainty via TLS+EIV; hierarchical MCMC (R̂/IAT) for convergence.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-out: parameter variations < 14%, RMSE fluctuation < 9%.
- Stratified robustness: G_env↑ → f_knee upshifts, RMS_r/RMS_θ rise slightly, KS_p mildly drops; γ_Path>0 at > 3σ.
- Noise stress test: inject 5% 1/f drift & mechanical vibration; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means change < 8%; evidence ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.051; blind-condition hold-outs keep ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/