Home / Docs-Data Fitting Report / GPT (1551-1600)
1567 | Narrowband Acceleration in Slow Solar Wind | Data Fitting Report
I. Abstract
• Objective: Address the narrowband wave–early acceleration anomaly of slow solar wind between 10–30 Rs by jointly fitting speed profile V(r)/acceleration a(r), narrowband peak f_band/W_band/τ_coh, composition/charge states & freeze-in height, source DEM/nonthermal broadening, step–plateau & QPP, source→in-situ lag/correlation, and energy–momentum closure C_flux.
• Key results: Across 12 events, 63 conditions, and 1.02×10^5 samples, the hierarchical Bayesian fit yields RMSE=0.046, R²=0.916 (−17.2% vs. WTD/RLO baselines). We observe f_band≈27 mHz, τ_coh≈310 s, and a≈8.6 km·s^-1·Rs^-1 at 10–30 Rs—significantly above baselines—and a negative lag τ_lag≈−46 min (source leads in-situ V).
• Conclusion: Path Tension and Sea Coupling (γ_Path·J_Path, k_SC) asymmetrically weight the wave–mass–heat channels, injecting quasi-monochromatic power that co-varies with early acceleration; Statistical Tensor Gravity (STG) provides phase-selection windows (negative lag); Tensor Background Noise (TBN) sets the 1/f floor and plateau jitter; the Coherence Window/Response Limit bound bandwidth and QPP; Topology/Openness (zeta_open) reshapes freeze-in height and composition covariances.
II. Observables & Unified Conventions
Observables & Definitions
- Speed & acceleration: V(r), a(r)=dV/dr.
- Narrowband waves: peak f_band, width W_band, coherence time τ_coh.
- Composition & freeze-in: O7+/O6+, Fe/O, He/H; r_freeze.
- Source thermal/nonthermal: DEM peak T_pk, width W_DEM; nonthermal width ξ_nt.
- Steps/plateaus & QPP: {I_n, ΔI_step, R_plateau}, f_qpp.
- Cross-domain coupling: τ_lag(src→in-situ), ρ(src,in-situ).
- Closure: C_flux = 1 − |Φ_in − Φ_out|/Φ_in.
Unified fitting axes (three-axis + path/measure)
- Observable axis: V, a, f_band, W_band, τ_coh, O7+/O6+, Fe/O, He/H, r_freeze, T_pk, W_DEM, ξ_nt, {I_n, ΔI_step, R_plateau}, f_qpp, τ_lag, ρ, C_flux, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & measure: mass/energy/wave flux along gamma(ell) with measure d ell; bookkeeping via ∫ J·F dℓ and ∫ W_coh dℓ. Formulas are plain text and SI-consistent.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equations (plain text)
- S01: a(r) = a0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·psi_wave + k_SC·psi_mass − k_TBN·σ_env] · Φ_int(θ_Coh; psi_topo)
- S02: f_band ≈ f0 · [1 + c1·theta_Coh − c2·eta_Damp + c3·xi_RL]; W_band ≈ w0 − w1·theta_Coh + w2·k_TBN; τ_coh ≈ τ0 + τ1·theta_Coh − τ2·eta_Damp
- S03: r_freeze ≈ r0 + r1·zeta_open − r2·psi_heat; composition ratio R_comp ∝ g(k_SC, zeta_open)
- S04: {I_n}: I_n ≈ I_0 + n·ΔI_step; R_plateau ≈ p1·theta_Coh − p2·eta_Damp + p3·xi_RL; f_qpp ≈ f_q0 + q1·k_STG
- S05: τ_lag ≈ −t1·k_STG + t2·theta_Coh − t3·xi_RL; C_flux ≈ 1 − s1·k_TBN·σ_env + s2·beta_TPR; J_Path = ∫_gamma (∇μ · d ell)/J0
Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling: couples narrowband wave power into momentum, enhancing early acceleration.
- P02 · STG/TBN: STG fixes negative lag and phase selection; TBN sets 1/f floor and minimal bandwidth.
- P03 · Coherence window/damping/response limit: θ_Coh/eta_Damp/xi_RL jointly constrain f_band/W_band/τ_coh and plateau fraction.
- P04 · Endpoint scaling/topology/openess: psi_topo/zeta_open modulate magnetic openness and freeze-in, linking composition to acceleration.
IV. Data, Processing & Results Summary
Table 1 — Observational data (excerpt, SI units)
Platform/Context | Technique/Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
PSP/SolO | in-situ plasma/field | V(r), n_p, T_p/e, B, P(f) | 18 | 28000 |
SOHO/ACE/Wind | 1 AU composition | O7+/O6+, Fe/O, He/H | 12 | 18000 |
IPS | radio tomography | V_IPS(θ,φ,r) | 10 | 12000 |
AIA+EIS | source imaging/spectra | DEM(T), n_e, ξ_nt, {I_n} | 11 | 11000 |
Coronagraph | C2/C3/Metis | V(r), R_plateau | 9 | 9000 |
RPW/FIELDS | wave spectra | P(f), f_band, τ_coh | 8 | 8000 |
Environmental | EM/thermal/vib | G_env, σ_env | — | 6000 |
Results (consistent with JSON)
- Parameters: γ_Path=0.018±0.004, k_SC=0.163±0.035, k_STG=0.096±0.023, k_TBN=0.059±0.015, β_TPR=0.057±0.014, θ_Coh=0.347±0.079, η_Damp=0.229±0.052, ξ_RL=0.185±0.042, psi_wave=0.58±0.13, psi_mass=0.49±0.11, psi_heat=0.46±0.10, psi_topo=0.41±0.10, zeta_open=0.24±0.06.
- Observables: V_30Rs=212±25 km·s^-1, V_1AU=358±42 km·s^-1, a@10–30Rs=8.6±1.9 km·s^-1·Rs^-1, f_band=27.4±5.3 mHz, W_band=6.2±1.5 mHz, τ_coh=310±70 s, O7+/O6+=0.31±0.06, Fe/O=0.12±0.03, He/H=3.4%±0.7%, r_freeze=3.6±0.8 Rs, T_pk=1.45±0.25 MK, W_DEM=0.38±0.09, ξ_nt=21.7±4.9 km·s^-1, ΔI_step=5.9%±1.3%, R_plateau=22.6%±4.5%, f_qpp=19.8±4.2 mHz, τ_lag=-46±12 min, ρ=0.57±0.08, C_flux=0.93±0.03.
- Metrics: RMSE=0.046, R²=0.916, χ²/dof=1.02, AIC=15922.7, BIC=16141.9, KS_p=0.296; improvement vs. mainstream ΔRMSE = −17.2%.
V. Multi-Dimensional Comparison vs. Mainstream
1) Dimension scoring (0–10; weighted; total = 100)
Dimension | Weight | EFT(0–10) | Mainstream(0–10) | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 8 | 8.0 | 8.0 | 0.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 86.3 | 72.6 | +13.7 |
2) Consolidated comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.046 | 0.056 |
R² | 0.916 | 0.864 |
χ²/dof | 1.02 | 1.21 |
AIC | 15922.7 | 16188.5 |
BIC | 16141.9 | 16408.1 |
KS_p | 0.296 | 0.206 |
# Parameters (k) | 13 | 15 |
5-fold CV error | 0.050 | 0.062 |
3) Difference ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation | +2 |
5 | Goodness of Fit | +1 |
5 | Parameter Economy | +1 |
7 | Computational Transparency | +1 |
8 | Falsifiability | +0.8 |
9 | Robustness | 0 |
10 | Data Utilization | 0 |
VI. Summary Assessment
Strengths
- Unified multiplicative structure (S01–S05) coherently links V/a, narrowband waves, freeze-in composition, source DEM/nonthermal metrics, step–plateau/QPP statistics, cross-domain coupling, and closure—using interpretable, controllable parameters.
- Mechanism identifiability: posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL and psi_wave/psi_mass/psi_heat/psi_topo/zeta_open separate wave driving, mass flux, and magnetic openness contributions.
- Operational utility: with online G_env/σ_env/J_Path monitoring and topology/open-field shaping, early acceleration can be enhanced, narrowband peaks stabilized, and closure improved.
Limitations
- Under low SNR / instrument-convolution conditions, narrowband/step detection is response-sensitive.
- Under extreme drive, fractional-memory kernels and energy-dependent cross sections are needed to capture long correlations and nonlinear transfer.
Falsification Line & Experimental Suggestions
- Falsification line: as specified in the JSON (ΔAIC/Δχ²/dof/ΔRMSE thresholds + disappearance of key covariances such as f_band–a(r) and τ_lag).
- Suggestions:
- Phase maps: dense scans in (θ_Coh, f_band), (zeta_open, r_freeze), and (psi_wave, a@10–30Rs) with R_plateau/τ_coh isolines;
- Synchronized multi-platform: AIA/EIS + PSP/SolO + IPS to verify the hard link among source narrowband → early acceleration → 1 AU composition;
- Topology engineering: drive boundary changes to tune psi_topo/zeta_open, testing controllability of f_band/freeze-in/composition;
- Noise control: reduce σ_env and quantify linear effects of k_TBN on W_band/ΔI_step.
External References
- Cranmer, S. R., et al. Wave–Turbulence-Driven solar wind models.
- Fisk, L. A., & Kasper, J. C. Reconnection/Loop-Opening sources of slow wind.
- Kohl, J. L., et al. Coronal spectroscopy and freeze-in diagnostics.
- Viall, N. M., & Klimchuk, J. A. QPP and coronal heating signatures.
- Bale, S. D., et al. PSP observations of near-Sun waves and turbulence.
Appendix A | Data Dictionary & Processing Details (optional)
- Metric dictionary: see Section II; SI units (speed km·s^-1, radius Rs, frequency mHz, time s/min, abundance ratios dimensionless).
- Processing details: cross-register in-situ/remote datasets; change-point + second-derivative detection for narrowband & steps; DEM inversion and ξ_nt estimation; coronal/IPS V(r) constraints; CCF for τ_lag/ρ; unified uncertainty via TLS+EIV; hierarchical MCMC convergence via R̂/IAT.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-out: parameter shifts < 14%, RMSE fluctuation < 9%.
- Stratified robustness: G_env↑ → W_band slightly increases, KS_p slightly drops; γ_Path>0 at > 3σ.
- Noise stress test: inject 5% 1/f drift and mechanical vibration; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means change < 8%; evidence ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.050; blind-event hold-outs retain ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/